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ABSTRACT
We present how we have strategically allocated fitness evalu-
ations in a large-scale rule based evolutionary system called
ECStar. We describe a strategy that culls potentially weaker
solutions early, then later only compete with solutions which
have equivalent fitness evaluations, as they are evaluated on
more fitness cases. Despite incurring some imprecision in
fitness comparison, which arises from not evaluating on all
the fitness cases or even the same ones, the strategy allows
our system to make effective progress when the resources at
its disposal are unpredictably available.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Program-
ming
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1. INTRODUCTION
Large repositories of data offering the potential for in-

ferential analysis via Machine Learning (ML) are becoming
more ubiquitous. For example, in this contribution, we are
referencing a large-scale medical database called MIMIC1

consisting of time series digital versions of physiological sig-
nals, and detailed clinical and bedside information from an
ICU setting. Physiological data alone is about 4TB. Our
current contribution attempts to solve the problem of pre-
dicting arterial blood pressure by learning from waveforms
in the database.

In general, to knowledge mine such repositories, a ML
system needs to handle the volume of data efficiently and
accurately. We are using an genetics-based ML (GBML)
approach to predict arterial blood pressure in ICU patient
waveform. As we use evolutionary computation our system
requires multiple passes through the training data. Training

1http://mimic.physionet.org
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data is repeatedly presented to different, evolving, candidate
solutions to evaluate their fitness.

Our system, ECStar is a distributed learning classifier sys-
tem, see [3]. It uses a large number of volunteer compute
nodes as “Evolutionary Engines”. An Evolutionary Engine
locally executes an evolutionary algorithm (EA) (iterative
population-based fitness evaluation, selection and reproduc-
tion) in its spare cycles. ECStar’s design is suited to using
volunteer compute nodes and exploits their low cost. How-
ever, using them, while also learning from a large data set,
imposes some conditions challenges:
Constrained RAM and disk space: Given that volun-
teers offer no more than 0.5GB RAM and very modest disk
space, it is infeasible to keep the entire training set at each
evolutionary engine.
Unpredictable volunteer availability: It is impossible
assure a particular evolutionary engine uses a particular split
of the fitness suite and all evolutionary engines provide full
fitness suite coverage. An evolutionary engine is served ran-
dom fitness cases from the fitness case server.
Potentially high latency communication: Since volun-
teers are widely dispersed geographically, communication to
and from the fitness case server needs to use packets which
are sized for minimal latency while not so small that their
frequent requests cause network congestion.

2. ECStar
ECStar can strategically allocate whatever number of fit-

ness evaluations it has available, over a fixed duration, in
order to assure fast learning progress, see Fig. 2.

Our strategy has a number of steps: Locally at each evo-
lutionary engine, we first cull individuals that perform rela-
tively worse on the basis of a small fraction of fitness cases,
while allowing those that are relatively better to survive.
These survivors are next “seasoned” locally on more fitness
cases. During seasoning, they are used for breeding. At
the end of seasoning, if they pass a minimum fitness stan-
dard, they become “graduates” of their evolutionary engine
and are passed to the hub of the ECStar system called the
“Evolutionary Coordinator”. Figure 2 shows the number of
evaluation (age) thresholds λ1, λ2, and λ3, on the breeding
pool.

The Evolutionary Coordinator archives the best graduates
it receives and randomly sends them out to evolutionary en-
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Figure 1: The hub and spoke model of ECStar.
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Figure 2: Evolution at the evolutionary engine.

gines as migrants for further fitness evaluations. Migrants
are returned periodically by evolutionary engines but how
long it will take is unpredictable. Some migrants may there-
fore receive many further fitness evaluations if they are for-
tunate enough to come and go to evolutionary engines which
are frequently available while others may take a very long
time to come back from just one evolutionary engine. The
Evolutionary Coordinator has to strategically deal with this
evaluation quantity mismatch while it exerts selection pres-
sure on migrants to keep their quantity in check. To do
this, its archive is a set of fixed size brackets each spanning
successively higher intervals of fitness evaluations. When
an individual arrives at the Evolutionary Coordinator, its
bracket is identified by consulting how many fitness cases
it has been evaluated on. Unless the bracket is not full,
it must be better than the lowest ranked individual in the
bracket, by relative fitness, to enter the archive. A truly fit
individual moves up the brackets as it is evaluated on more
fitness cases. Eventually it reaches the topmost bracket and
is sequestered off the system as a high performing solution.

In fact, at any point in time, the archive can be consulted
for the best performing individuals of the system.

The strategy is effective at assuring fair competition when
individuals local to an evolutionary engine have fewer evalu-
ations because these individuals have been evaluated on the
same test cases. After individuals become migrants, com-
petition at the Evolutionary Coordinator is fair in terms
of fitness case quantity but somewhat noisy due competi-
tors likely not having been evaluated on the same fitness
cases. However this noise decreases in higher brackets be-
cause when individuals have been tested on more fitness
cases, there is a higher likelihood that some of their fitness
cases are in common, i.e. “symmetric”. The most important
parameter of the method is how many fitness cases are used
at the evolutionary engine for the first culling step. If that
quantity is too low, the system would be vulnerable to mak-
ing poor early choices because fitness estimates at this step
are too unreliable. If the quantity is too high, fitness eval-
uations are wasted on individuals that are truly fit enough
to breed, migrate and provide a good solution.

Our bracketing strategy ensures that only individuals which
have been evaluated on the same number of fitness cases
compete. It is important not to confuse this with age lay-
ering as in ALPS, [1]. Age in ALPS denotes how many
generations an individual descends from.

3. EXPERIMENTS
Our goal is to predict the arterial blood pressure (ABP)

of patients in an Intensive Care Unit. The signals include
multiple leads of ECG, Arterial Blood Pressure, and Pul-
monary Artery Pressure [2]. We select data for a subset of
47 patients and set the thresholds for different classes based
on Mean Arterial Pressure MAP. We use a lag of 100 beats,
future time window is set to 30 min and the forecast window
is set to 10 min.

We employ a beat onset detection algorithm provided by
the MIMIC II database and extract the samples that corre-
spond to a beat and extract the features. We filter the data
and extract and label features. The signal for each patient
is divided into data packages with 1500 rows. From prelim-
inary results for runs lasting 1h with 3 fold cross validation
the mean prediction accuracy of the top solutions were 82%.

For future work one improvement of the design would be
to have different selection pressure at the different layers.
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