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Abstract
The Dialog State Tracking Challenge 4 (DSTC 4) proposes several pilot tasks. In

this paper, we focus on the spoken language understanding pilot task, which consists
of tagging a given utterance with speech acts and semantic slots. We compare dif-
ferent classifiers: the best system obtains 0.52 and 0.67 F1-scores on the test set for
speech act recognition for the tourist and the guide respectively, and 0.52 F1-score
for semantic tagging for both the guide and the tourist.

1 Speech act recognition

Recognizing the speech acts of the current utterance is one of the two goals of the
spoken language understanding pilot task. In the training and development sets, each
utterance is annotated with one speech act. One speech act is composed of zero, one
or two speech act categories. Each speech act category has in turn zero, one or two
speech act attributes. There are 4 speech act categories, and 22 speech act attributes.
[6] and [7] give further details on the task. The main approaches for this task are
presented in [15, 1, 17, 5, 16, 19, 10, 3].

We submitted 5 systems. Systems 3 and 5 were the best performing ones. Sys-
tem 3 is based on a support vector machine (SVM) classifier to recognize the speech
acts: the features are the 5000 most common unigrams, bigrams, trigrams, as well as
a binary feature indicating whether the current speaker is different from the speaker
in the last utterance. To account for the history, each feature is computed for both the
current and the previous utterance. Two SVM classifiers were trained: one for each
speaker. The kernel function as well as the penalty parameter of the error term were
both optimized with 5-fold cross-validation. System 5 is similar, but with logistic
regression as the classifier; moreover, it uses one single speaker-independent model
instead of one model per speaker, as it slightly improves the results on the develop-
ment set. Systems 3 and 5 assume that each utterance contains exactly one speech act
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category and one speech act attribute: they are therefore multiclass, monolabel clas-
sifiers, with 88 possible classes (4 speech act categories×22 speech act attributes).

System 4 is based on a random forest classifier and has only 4 features: the num-
ber of question marks (discrete value), whether the current speaker is different from
the speaker in the last utterance, whether the current speaker is different from the
speaker in the second to previous utterance, and whether the current speaker is the
guide or the tourist. System 4 was designed to predict the speech act categories, but
not the speech act attributes. System 2 is the same as System 4, except that System
4’s features are computed on the current and previous utterances, while System 2’s
features are computed on the current, previous and second-to-previous utterances.

System 1 is a rule-based classifier consisting of set of around 10 simple rules
(e.g. if the preceding utterance is predicted as a question, then the current utterance
is a response): it was designed to be used as a baseline. Table 1 presents the results.

2 Semantic tagging

Semantic tagging is the second goal of the SLU pilot task. A tagged entity comprises
one or several words. A tag includes one of 8 main categories, and may contain a
subcategory, a relative modifier, and a from-to modifier. The ontology contains the
list of subcategories, relative modifiers, and from-to modifiers that are present in
each main category. [6] and [7] give further details on the task. The main approaches
for this task are presented in [8, 9, 14, 12, 18, 4, 11, 2].

Our semantic tagging system is based on conditional random fields (CRFs) im-
plemented by the CRFsuite library [13] and uses the following features computed
on 7 consecutive words (the current word, the 3 previous words, and the 3 follow-
ing words): case-insensitive unigrams, the last 3 characters of the word, whether
the first letter of the word is an uppercase, whether all the letters of the word are
uppercases, whether the word contains a digit, the coarse-grained part-of-speech of
the word, and the fine-grained part-of-speech of the word. Four CRFs are trained
independently, one for each of the 4 types of attributes: main category, subcategory,
relation, and from-to. To combine the output of each CRF, a semantic tag is first
generated for each sequence of words tagged by the main category CRF. The other
thee attributes are included in the semantic tag if these words are tagged by the cor-
responding CRFs with a value that is present in the main category according to the
ontology. Table 1 presents the results.

Table 1 Results of different systems on the test set, evaluated by DSTC 4’s organizers.

Tracker
Guide Tourist

Precision Recall F1-score Precision Recall F1-score
System 1 0.6287 0.5191 0.5687 0.3583 0.2977 0.3252
System 2 0.6330 0.5227 0.5726 0.2931 0.2435 0.2660
System 3 0.7451 0.6153 0.6740 0.5627 0.4675 0.5107
System 4 0.6314 0.5214 0.5712 0.2939 0.2442 0.2668
System 5 0.6762 0.5584 0.6117 0.5736 0.4766 0.5206
Semantic 0.5646 0.4886 0.5239 0.5741 0.4764 0.5207
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