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Abstract

Our project focused on extending the functionality of MADlib. MADlib is an open source machine
learning and statistics library which works with Postgres or Greenplum to provide in-database analytics.
Although some machine learning algorithms have been implemented in MADlib, there is room for addi-
tional contributions. We have implemented two different machine learning algorithms, symbolic regression
with genetic programming and adaptive boosting for MADlib, and are in the process of contributing our
code to the MADlib community codebase. We have also assessed the performance of our implementations
and compared their performance with the same algorithms outside MADlib.

1 Introduction

Traditionally, large databases were mainly used for data warehousing i.e. accounting purposes in enter-
prises, supporting financial record-keeping and reporting at various levels of granularity. However, over the
past decade, attitudes toward large databases have been changing quickly. Focus of large database usage
has shifted from accountancy to analytics. Though the need for correct accounting and data warehousing
practice still prevails, but it is becoming a shrinking fraction of the volume. The emerging trend rather
focuses on supporting predictive analytics via statistical models and algorithms, for potentially noisy data.

In 2008, a group of data scientists came together to describe the emerging trend in database industry and
developed a number of non-trivial analytics techniques implemented as simple SQL scripts [4]. They called
it MAD, an acronym for Magnetic platform, Agile design patterns for modeling, loading and iterating
over data, and Deep statistical models and algorithms for data analysis. This work eventually led to the
development of a software framework - a library of analytic methods that can be installed and executed
within a relational database engine that supports extensible SQL [9]. This library is known as MADlib.

MADlib is a free, open source library for in database analytic method available at http://madlib.net.
It provides an evolving suite of SQL-based algorithms for machine learning, data-mining and statistics
that run at scale within a database engine, with no need for data import/export to other tools. The
goal of MADlib project is to eventually serve a role for scalable database systems that is similar to the
CRAN library for R: a community repository of statistical methods supporting scalability and parallelism.
At present, MADlib works with Postgres and Greenplum only and provides support for a limited set of
analytic methods as shown in Table 1. The methods are implemented mostly in python, C++ and SQL.
The project is open for contributions of both new methods, and ports to additional database platforms.

In this project, we aimed at contributing to the MADlib project by implementing two different machine
learning algorithms - the first one is Genetic Programming which is a prediction algorithm and the second
one is Adaptive Boosting which is a popular classification algorithm. Our goal was to implement those
algorithms in python and SQL, incorporate them into MADLib and analyze their performance on a number
of factors.

The rest of the report is organized as follows: in Section 2 we discuss the state of the art. Section 3,
describes the background for each of the algorithms we implemented. We also discuss the MADlib
implementations of the algorithms. In Section 4, we discuss the benchmarking setup and datasets. We
also discuss our findings from benchmarking the algorithms on various factors. Finally, we conclude our
report in Section 5.
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Category Method
Supervised Learning Linear Regression

Logistic Regression
Naive Bayes Classification
Decision Trees (C4.5)
Support Vector Machines

Unsupervised Learning k-Means Clustering
SVD Matrix Factorization
Latent Dirichlet Allocation
Association Rules

Descriptive Statistics Count-Min Sketch
Flajolet-Martin Sketch
Data Profiling
Quantiles

Support Modules Sparse Vectors
Array Operations
Conjugate Gradient Optimization

Table 1: Methods provided in MADlib v0.3 [9]

2 Related Works

The space of approaches that combines analytics with data has been growing rapidly. At a high level,
there are two approaches:

1. Top-down language-based approach: This approach brings a statistical language to a data processing
substrate.

2. Framework-based approach: This approach provides a framework to express statistical techniques
on top of a data processing substrate.

Top-down approaches begin with a high-level statistical programming language like R or Matlab to specify
machine learning algorithms. These high-level algorithms are then compiled down to the data infrastruc-
ture. Examples of such approach are System ML from IBM [8], Revolution Analytics [2] and SNOW [12].

Framework-based approaches provide a set of building blocks (individual machine learning algorithms)
with library support for macro- and micro-programming to write the algorithms. Typically they provide
a template to automate the common aspects of deploying an analytic task over a data substrate. There
have been different framework based approaches for different data substrates. For example, MADlib
provides a machine learning and statistics library for RDBMS [9]. Apache Mahout provides an open
source machine learning library for Apache Hadoop [1]. SciDB advocates a completely rewritten DBMS
engine for numerical computation [11]. GraphLab framework provides simplified support for programming
parallel machine learning tasks [10]. Spark is a Scala-based domain-specific language (DSL) targeted at
machine learning, providing access to the fault-tolerant, main-memory resilient distributed datasets [13].
ScalOps provides a Scala DSL for machine learning that is translated to Datalog, which is then optimized
to run in parallel on the Hyracks infrastructure [3]. ScalOps bears more similarity with MADlib since it
has its origins in Datalog and parallel relational algebra.

We limited our focus on understanding and extending MADlib. Currently, MADlib has much room for
growth in multiple dimensions. The MADlib library supports only a limited number of machine learning
algorithms as shown in Table 1. So, there is an open invitation to contribute additional statistical
models and algorithmic methods, both textbook techniques and cutting-edge research. Also, there is the
challenge of porting MADlib to DBMSs other than PostgreSQL and Greenplum. Since MADlib is open
source, anyone can contribute to MADlib codebase following their guidelines.

3 Implementation of Algorithms

In this section, we discuss the implementation details of our algorithm. Before diving into the details of
our implementations, first we look at the architecture of MADlib. Then we discuss the background and
implementation details of genetic programming and adaptive boosting.
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3.1 Understanding MADlib architecture

Performing linear algebra over matrices is at the heart of many statistical methods.And it is quite chal-
lenging for relational databases to operate over very large matrices. At a macroscopic scale, the matrices
need to be partitioned intelligently so that the partitions can be fit into memory of a single machine
and then there should be options for movement of these partitions in and out of database by using SQL
constructs. At microscopic level, the database engine needs to be able to invoke efficient linear algebra
functions on the data partitions. MADlib uses a number of techniques to address these challenges:

User-defined Aggregation

MADlib uses user-defined aggregates (UDA) as a basic building block in the macroscopic level whenever
applicable. UDAs are the natural way in SQL to implement mathematical functions that take arbitrary
number of tuples as input. A user-defined aggregate consists of three user-defined functions:

� A transition function that takes current transition state and a new tuple and combines them into a
new transition state.

� An optional merge function that takes two transition states and computes a new combined transition
state. This function is only needed for parallel execution.

� A final function that takes a transition state and transforms it into output value.

However, UDAs are not enough for implementing iterative algorithms which perform multiple passes over
the data.

Driver functions for Multipass Iteration

Many statistical and machine learning algorithms are iterative in nature and do multiple passes over the
dataset. They cannot be implemented as simple UDAs. MADlib implements complex iterative methods
by writing driver user-defined functions (UDF) in Python to control iteration. The driver UDF stores any
inter-iteration output into a temporary table and reuses the resulting table in subsequent iterations as
needed. Final outputs are also stored in tables unless they are small, and can be queried as needed. As a
result all data movement is done inside database engine and its bufferpool.

Support for Microprogramming

MADlib implements row-level UDFs (functions that are called multiple times per row) in C or C++.
Thus, these functions can call open source libraries like LAPACK or Eigen. MADlib also includes a sparse
matrix library written in C.

C++ abstraction layer for UDFs

MADlib provides a C++ abstraction layer for making it easier to write driver UDFs. UDFs can be
written using standard C++ atomic types as well as vector and matrix types that are native to linear
algebra operations. The C++ abstraction layer also provides memory management and exception handling
support. Finally, it includes third-party libraries so that developers can write efficient code.

Python support for UDFs

MADlib is still in its early stages of development. It does not provide a full-fledged Python abstraction
layer for writing driver UDFs. It only provides a database access layer via plpy.py module using classic
PyGreSQL interface named pg.

Currently, most of the MADlib functions require to be cognizant of the schema of the input tables and
produce output table with fixed schema.

3.2 Genetic Programming for symbolic regression

3.2.1 Background

Genetic programming is a subset of evolutionary algorithms, which is a family of optimization algorithms
based on the principle of Darwinian natural selection. As part of natural selection, a given environment
has a population of individuals that compete for survival and reproduction. The ability of each individual
to achieve these goals determines their chance to have children, in other words to pass on their genes to
the next generation of individuals, who for genetic reasons will have an increased chance of doing well,
even better, in realizing these two objectives.
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This principle of continuous improvement over the generations is taken by evolutionary algorithms to
optimize solutions to a problem. In the initial generation, a population composed of different individuals
is generated randomly or by other methods. An individual is a solution to the problem, more or less good:
the quality of the individual in regards to the problem is called fitness, which reflects the adequacy of
the solution to the problem to be solved. The higher the fitness of an individual, the higher it is likely to
pass some or all of its genotype to the individuals of the next generation.

An individual is coded as a genotype, which can have any shape, such as a string (genetic algorithms),
a vector of real (evolution strategies) or in our case a tree (genetic programming). Each genotype is
transformed into a phenotype when assessing the individual, i.e. when its fitness is calculated. In some
cases, the phenotype is identical to the genotype: it is called direct coding. Otherwise, the coding is
called indirect. For example, suppose you want to optimize the size of a rectangular parallelepiped defined
by its length, height and width. To simplify the example, assume that these three quantities are integers
between 0 and 15. We can then describe each of them using a 4-bit binary number. An example of a
potential solution may be to genotype 0001 0111 01010. The corresponding phenotype is a parallelepiped
of length 1, height 7 and width 10.

During the transition from the old to the new generation are called variation operators, whose purpose
is to manipulate individuals. There are two distinct types of variation operators:

� the mutation operators, which are used to introduce variations within the same individual, as
genetic mutations;

� the crossover operators, which are used to cross at least two different genotypes, as genetic crosses
from breeding.

The figure 1 summarizes how an evolutionary algorithm works.

Figure 1: Functioning of an evolutionary algorithm: from an initial population of solutions (in symbolic
regression, a solution is the tree representing a fraction), they are ranked according to their fitness, the worst
ones are eliminated and the best ones are used to produce new solutions.

Genetic programming is a perfect suit for symbolic regression. The term ”symbolic regression” represents
the process during which measured data are fitted by suitable mathematical formula like x2+C, sin(x)+
1/ex, etc. The figure 2 shows how a formula can the represented as a tree. This process is quite well
known amongst mathematician and is used when some data of unknown process are obtained. The
domain of symbolic regression is of functional nature, i.e. it consists of a function set like (sin(), cos(),
gamma(), MyFunction(),...) and so called terminal set (t, x, p, ...). The final program is synthesized
from a mixture of both sets, and can be quite complicated from a structural point of view. We plan
to use genetic programming for symbolic regression in order to unravel unknown relation between some
given attributes of a relation.
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Figure 2: A function represented as a tree structure. Source: Wikipedia

3.2.2 Madlib Implementation

We implemented the symbolic regression using genetic programming within a Python module for MADlib
that depends on the Python evolutionary computation framework DEAP [5]. The user can choose
whether to store the data in memory, or retrieve by batch: this is a CPU vs. RAM trade-off.

Below is an example of a query that runs a symbolic regression, with 100 individuals per population size,
20 generations, and with a maximum size of the trees of 3. It takes 3 attributes as input (x1, x2 and x3)
and one attribute as output (y1):

postgres=# SELECT * from madlib.gp(’mock’, ’{x1, x2, x3}’, ’{y1}’, 100, 20, 3);

3.3 Adaptive Boosting

3.3.1 Background

Boosting is one of the most important developments in classification methodology. Boosting works by
iteratively applying a classification algorithm to re-weighted versions of the training data and then taking
a weighted majority vote of the sequence of classifiers thus produced. For many classification algorithms,
this simple strategy results in dramatic improvements in performance. While boosting has evolved over the
years, we focus on the most commonly used version of boosting known as Adaptive Boosting (AdaBoost)
for binary classification developed by Freund and Schapire [6].

Let us look at a concise description of AdaBoost in a two-class classification setting. We have training data
(x1, y1), . . . , (xn, yn) with xi a vector valued feature and yi = −1 or 1. We define F (x) =

∑M
1 cmfm(x)

where each fm(x) is a classifier producing values 1 or − 1 and cm are constants; the corresponding
prediction is sign(F (x)). The AdaBoost procedure trains the classifiers fm(x) on weighted versions of
the training sample, giving higher weight to cases that are currently misclassified. This is done for a
sequence of weighted samples, and then the final classifier is a linear combination of the classifiers from
each stage. The pseudocode for AdaBoost is given in Figure 3.

Figure 3: AdaBoost algorithm. Ew represents expectation over the training data with weights w =
(w1, w2, . . . , wN ) and I(S) is the indicator of the set S [7].
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We used “Stumps” as weak learners. Stumps are single-split trees with only two terminal nodes. Stumps
are simple to implement, typically have low variance and success of boosting depends on variance reduc-
tion [7].

3.3.2 Madlib Implementation

The challenge in implementing (binary) Adaptive Boosting classification for MADlib is that, the algorithm
is iterative in nature and in each iteration, it needs to make a pass over the entire training dataset as well
as the weights data. Therefore, it cannot be implemented as a simple user-defined aggregate (UDA). We
implemented AdaBoost as a driver UDF in Python. For performing Matrix arithmetic we used the numpy

package. The control flow of the UDF is shown in Figure 4.

Figure 4: Control Flow of AdaBoost Implementation for MADlib.

The row-by-row, batched and in-memory versions differ only in how we access the training and test dataset
and weights table. See Appendix E for documentation of usage of AdaBoost module.
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4 Benchmark

In this section, we show the results of the benchmarks that we performed to assess the performance of
our implementations in various settings. We also discuss the implications of the results that we found.

4.1 Setup

We ran the benchmark on PostgreSQL 9.1.9 and MADlib v0.3 on a single machine on a gigabit Ethernet
cluster which runs Ubuntu 12.04 LTS and has 4GB RAM, a 10GB SATA HDD and a Core 2 Duo 2.4GHz
CPU.

To benchmark the performance of GP for Symbolic Regression we used a synthetic dataset containing
100,000 rows, 3 inputs and 1 output. The function we used to generate the data is x1 ∗ (x2

2 + x3).

To benchmark the performance of AdaBoost, we used BUPA liver disorder dataset which contains
blood test results of 345 male individuals. This dataset is available at http://www.cs.huji.ac.il/

~shais/datasets/ClassificationDatasets.html. We also used a synthetic dataset which consisted
of 240000 × 11 matrix where first 10 columns are real valued random numbers and the last column
indicates the class.

Each run of our algorithms inside MADlib was cold start meaning that we cleared the caches and restarted
the database service (PostgreSQL) for every run.

4.2 Analysis of Results

Our benchmarking results are tabulated in Appendix A. Here, we discuss our understanding of the findings.

Effect of varying independent variables on runtime and memory usage.

The first focus of our analysis was the effect of the parameters of the symbolic regression and of AdaBoost
on runtime and memory usage. Figure 5 shows that when we increase the value of our parameters, it
increases the runtime proportionally as expected. By the same token, increasing the size of the data set
cause PostgreSQL to use a higher amount of memory (Figure 9 all-in-memory execution).

Figure 5: Runtimes of symbolic regression inside and outside MADlib.

Performance inside and outside MADlib

Figure 5 also compares the runtime between different execution environments: within MADlib, outside
MADlib reading from a file and outside MADlib reading from the PostgreSQL database. The code used
in all the cases was strictly identical in order to ensure a fair comparison between execution environments.
Also, all the data was loaded in memory just before the function call.

First of all, in the case of the dataset that we used to perform symbolic regression, which contains 100,000
rows and of size 2686 KB, on average reading from a file takes 230 ms whereas it takes 510 ms reading
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Figure 6: Runtimes of AdaBoost algorithm inside and outside MADlib.

from the PostgreSQL database. It takes 12.14 ms on average to read the BUPA dataset (345× 7) from
file where reading from PostgreSQL takes 12.68 ms.

The most intriguing result is the runtime within MADlib, which is significantly slower than the runtime
outside MADlib. This result cannot be explained by the fact that querying the database makes running
within MADlib slower since running outside MADlib reading from the PostgreSQL doesn’t have the issue,
and the difference of runtime increases when the number of iterations increases, which means the reason
isn’t a fixed cost.

To investigate this difference of runtime we bypassed MADlib and created PL/Python test case that
narrows down the issue:

CREATE FUNCTION testcase (b integer)

RETURNS float

AS $$

import time

start = time.time()

a = 0

for i in range(b):

for ii in range(b):

a = (((i+ii)%100)*149819874987)

end = time.time()

plpy.info("Time elapsed in Python: " + str((end - start)*1000) + ’ ms’)

return a

$$ LANGUAGE plpythonu;

We compared the latter code with the following identical Python code:

import time

import sys

def testcase (b):

a = 0

for i in range(b):

for ii in range(b):

a = (((i+ii)%100)*149819874987) # keeping Python busy

return a

def main():

numIterations = int(sys.argv[1])

start = time.time()

print testcase(numIterations)

end = time.time()

print "Time elapsed in Python:"
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print str((end - start)*1000) + ’ ms’

if __name__ == "__main__":

main()

On our benchmark server, calling the PostgreSQL PL/Python function using select * from testcase(20000);,
it takes on average 65 seconds, while when we call the usual Python script with 20000 as argument too
it takes an average 48 seconds. The averages were computed running the queries and scripts 10 times.
This result means that for some reason the CPython that is embedded in PostgreSQL 9.1 is slower than
the Python 2.7.3 we use outside PostgreSQL.

We tested with PostgreSQL 9.2 (with Ubuntu 12.10 this time), and we still notice a runtime difference
on my server (although overall 10% faster, probably due to some new version of CPython). We also tried
using plpython3u, which implements PL/Python based on the Python 3 language variant. plpythonu
that we used before is equivalent to plpython2u, which implements PL/Python based on the Python 2
language variant. Using plpython3u is far slower (88 seconds), but when running the Python script using
python3 it is also slower (75 seconds), although still significantly faster than plpython3u.

Performance of batched execution.

So far our modules have loaded all the data in memory, then performed the computations on them.
However, in some situation we might not have enough memory to store all the data. In older to circumvent
this issue our modules allow to define the amount of memory the user wants to grant to the module. To
do so, our GP implementation lets the user to choose the batch size, which corresponds to the number
of rows the module can put in memory and the AdaBoost implementation lets the user to choose the
number of batches (dataset will be divided into the number of partitions chosen by the user). At each
iteration of the algorithm, we retrieve data in batches. Since we cannot store them in memory, it means
we will have in total a significant amount of read/write accesses to the database. The smaller the batch
size the higher the amount of read/write queries at each iteration will be.

Figure 7: Runtimes of row-by-row, batched and all-in-memory execution of symbolic regression. The
dataset contains 100,000 rows. Having a batch size of 10,000 rows means that at each iteration we do
100, 000/10, 000 = 10 queries on the database

Figure 7 shows the effect of the batch size in the case of the symbolic regression. We fixed the parameters
and only changed the batch size. As we can see, having a batch size of 10,000 rows or a batch size of
1,000 rows is a pretty good trade-off: for batch size = 10,000 rows, the runtime is 1.5 times bigger, and
for batch size = 1,000 rows, the runtime a bit less than twice bigger. See Table 3 in Appendix A. Since
the memory used is proportional to the batch size, it makes using large batches look attractive. However,
if we further decrease the batch size, we see that it starts having a very negative impact on the runtime.

Figure 8 shows that, in case of AdaBoost, as we decrease the number of batches runtime decreases which
is clearly useful in case we don’t have enough memory to load the entire dataset. However, there is a
significant difference between the runtimes of batched case vs all-in-memory case. This is because, in
our all-in-memory implementation, we load the training and testing datasets once and then all weights
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Figure 8: Runtimes of row-by-row, batched and all-in-memory execution of AdaBoost algorithm on synthetic
dataset.

calculations are done in memory, whereas, in batched or row-by-row version, we create a weights table
and in each iteration we read the weights table for fitting the classifier and also update the rows of the
table with updated weights. Thus both batched and row-by-row version include significant amount of
disk access which is time-consuming.

Figure 9: Memory usage by AdaBoost algorithm on synthetic dataset.

Table 6 shows the runtimes and Table 7 shows the memory usage of row-by-row execution, batched
execution and all-in-memory execution of AdaBoost when it is run on a synthetic dataset of varying size.
We can see that, batching gives us advantage in terms of memory usage.

5 Conclusions & Future Work

In this project, we aimed at contributing to MADlib by implementing two algorithms namely, Genetic
Programming for Symbolic Regression and Adaptive Boosting for Binary Classification. We implemented
the algorithms as MADlib modules, more specifically as Python driver UDFs inside PostgreSQL database.
We tried to analyze the performance of these algorithms in a number of different settings. From the
benchmarks we did, we initially found that, the runtime of both of the algorithms increases as we increase
the number of independent variables (e.g., number of individuals in population or number of iterations
for boosting). Running the algorithms using MADlib takes more time than bypassing MADlib altogether
when data can be fit into memory. Running the algorithms using MADlib is advantageous when the
dataset cannot be fit into memory. Batched execution is more efficient than row-by-row execution in
terms of run time. As we increase batch size (i.e. decrease number of batches) we can see a decrease

10



in runtimes of the algorithms. Also, it is more efficient than reading the whole dataset into memory in
terms of memory usage. However, we were faced with the issue that, the im-memory implementation of
both the algorithms take more time inside MADlib which needs further investigation.

Our ultimate goal is to contribute our code to the MADlib codebase: we have already established contact
with the core developers through the official MADlib mailing-list. In future, we plan to incorporate
parallelism in these algorithms. Right now our implementation works only with PostgreSQL. We would
like to add support for Greenplum, as MADlib is also compatible with it, and take advantage of their
native parallelism.
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Appendix A: Tables showing Benchmarking Results

The following tables show benchmarking results for symbolic regression using genetic programming and
classification using adaptive boosting.

Pop size # of gen.
Runtimes (sec)

Outside MADlib Outside MADlib
Inside MADlib

from PostgreSQL from File

5 5 5.513 4.860 6.787

10 5 7.166 6.295 8.560

20 5 13.879 12.484 17.610

50 5 32.568 30.637 44.261

100 5 65.385 62.013 88.910

200 5 135.105 128.238 182.672

500 5 300.677 314.149 425.092

1000 5 597.274 582.635 810.041

5 10 7.888 7.669 10.523

5 20 11.245 11.137 16.282

5 50 25.119 23.975 35.220

5 100 47.355 46.355 69.156

5 200 92.778 95.063 119.511

5 500 226.639 239.827 293.664

5 1000 491.201 489.361 591.823

20 20 44.813 44.813 56.965

Table 2: Symbolic Regression runtimes on synthetic dataset.

Pop; Gen
Runtimes (sec)

All-in-Memory 10000-row batch 1000-row batch 100-row batch 10-row batch Row-by-Row

5; 5 6.787 11.012 14.220 93.387 845.325 8153.139

Table 3: Symbolic Regression runtimes on synthetic dataset. Pop stands for population size. Gen stands for
number of generations.

NumIter
Runtimes (sec)

All-in-Memory 2 Batches 5 Batches 10 Batches 50 Batches Row-by-Row

50 1.04 96.72 99.23 149.96 213.31 314.75

100 2.09 147.90 236.93 527.41 770.55 1215.30

150 2.69 283.44 548.98 844.80 1746.58 2727.17

200 3.39 675.45 986.81 1107.41 3118.15 4334.23

250 4.18 1052.99 1728.76 2546.37 3118.154 6525.33

300 4.88 1566.79 2814.76 3926.46 6367.52 9041.89

350 5.72 2578.63 3789.65 5444.76 8567.15 11822.67

400 6.58 4548.88 5567.59 9720.97 12319.85 16878.20

450 7.58 7143.48 8869.80 12414.58 17613.34 24683.87

500 7.96 9776.36 11934.97 16977.72 23814.81 30417.70

Table 4: AdaBoost runtimes on BUPA liver disorder dataset (Row-by-Row vs. Batched vs. All-in-Memory
execution).
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NumIter
Runtimes (sec)

Outside MADlib Outside MADlib
Inside MADlib

from PostgreSQL from File

500 6.73 6.37 7.96

1000 10.85 12.23 14.01

1500 16.82 18.27 20.43

2000 21.87 24.56 27.50

2500 27.13 30.92 33.52

3000 32.95 38.25 40.27

3500 38.11 43.28 47.11

4000 43.51 50.45 54.48

4500 50.86 57.02 60.51

5000 57.86 62.97 72.63

7000 82.00 88.12 133.256

10000 127.60 124.88 252.98

Table 5: AdaBoost runtimes on BUPA liver disorder dataset (Inside vs. Outside MADlib).

NumTuples
Runtimes (sec)

All-in-Memory 2 Batches 5 Batches 10 Batches 50 Batches Row-by-Row

20000 92.02 10938.07 11932.44 12702.27 14063.23 19688.52

30000 143.13 14379.26 15418.72 16838.87 18024.70 25595.08

40000 201.38 17579.04 19390.21 20911.01 22690.67 31993.85

50000 252.59 23106.67 25055.43 26324.06 29708.58 41592.01

60000 320.38 29576.54 32432.05 34126.77 38026.98 53237.77

Table 6: AdaBoost runtimes on synthetic dataset.

NumTuples
Memory Usage (%)

All-in-Memory 2 Batches 5 Batches 10 Batches 50 Batches Row-by-Row

80000 9.0 7.8 4.1 3.2 2.7 2.6

120000 12.4 7.9 4.2 3.4 3.0 2.7

160000 15.9 7.9 4.2 3.4 3.2 2.7

200000 18.1 8.0 4.3 3.6 3.2 2.6

240000 21.3 8.2 4.4 3.7 3.4 2.7

Table 7: AdaBoost memory usage for synthetic dataset

13



Appendix B: Installing Madlib with PostgreSQL

The following instructions have been tested on Ubuntu 12.04 x64. They will not work with Ubuntu 12.04
x32 (MADlib does not have support for Ubuntu 32-bit). Also, MADlib doesn’t work with GCC 4.7.*.
Since, Ubuntu 12.10 ships with GCC 4.7.2 it might be an issue while installing MADlib on Ubuntu 12.10.

Install PostgreSQL packages:

$ sudo apt-get -y install \

postgresql-9.1 libpq-dev \

postgresql-server-dev-9.1 \

postgresql-plpython-9.1

Download MADlib from http://madlib.net and copy .tar file to server:

$ wget https://github.com/madlib/madlib/zipball/v0.5.0

$ unzip v0.5.0

$ cd madlib-madlib-5fabd88

Build Madlib:

$ sudo apt-get -y install cmake

$ sudo apt-get -y install m4 gcc-4.6 g++-4.6 g++

$ ./configure

$ cd build/

$ make

$ make doc

$ make install

Connect to the database:

$ sudo su - postgres

$ psql

Add a password to a role:

postgres=# ALTER ROLE postgres WITH PASSWORD ’postgres’;

Register Madlib with the PostgreSQL database

$ /usr/local/madlib/bin/madpack -p postgres -c \

$USER@$HOST/postgres install

Test the installation by running install check procedure:

$ /usr/local/madlib/bin/madpack -p postgres -c \

$USER@$HOST/$DATABASE install-check

Appendix C: Creating a module in Madlib

Create a new function testpy. We are going to create this section in any module called ’testmod’.

� Add new module folder: ./src/ports/postgres/modules/testmod/

� Create in this folder the following files:

– init .py in

– testmod.py in

– testmod.sql in

� Modify ./src/config/Modules.yml and add a new line ” - name: testmod”

� recompile MADlib: with any user:

– ./configure

– make install # (no need for make clean) (in the MADlib build folder)

� re-register MADlib into Postgresql (with postgres user):

– /usr/local/madlib/bin/madpack -p postgres -c $USER@$HOST/postgres reinstall
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Appendix D: How to use Genetic Programming module in
MADlib

Input

The input data is expected to be of the following form:

TABLE tableName (

x1 DOUBLE PRECISION,

...

xN DOUBLE PRECISION,

y DOUBLE PRECISION

)

Usage

Perform Symbolic Regression using Genetic Programming:

postgres=# SELECT * FROM madlib.gp (

’inputTableName’,

’{x1, ..., xN}’, ’{y}’,

numIndividuals,

numGenerations,

maxDepthOfTree

);

Example

This is an example showing how to perform symbolic regression using the genetic programming module
in MADlib.

Generate an artificial dataset using MATLAB that contains 100,000 rows:

x1 = 1 : 0 . 0 0 0 1 : ( 1 0 + 5 0 0 0 ) ;
x2 = 1 0 : 0 . 0 0 0 1 : ( 1 9 + 5 0 0 0 ) ;
x3 = 5 : 0 . 0 0 0 1 : ( 1 4 + 5 0 0 0 ) ;
a =[ x1 ; x2 ; x3 ; x1 . * ( x2 .ˆ2+ x3 ) ] ;
c s v w r i t e ( ’ mock . c s v ’ , a ( 1 : 1 0 0 0 0 0 , : ) )

Import this dataset within PostgreSQL:

postgres=# CREATE TABLE mock (X1 real, X2 real, X3 real, Y1 real);

postgres=# COPY mock FROM ’/root/mock.csv’ DELIMITERS ’,’ CSV;

Run the symbolic regression, with 100 individuals per population size, 20 generations, and to maximum
size of the trees of 3. We take 3 attributes as input (x1, x2 and x3) and one attribute as output (y1):

postgres=# SELECT * from madlib.gp(’mock’, ’{x1, x2, x3}’, ’{y1}’, 100, 20, 3);

The above query produces the following output:

individual | fitness

---------------------------------+-------------------

[mul, add, mul, x2, x2, x3, x1] | 0.000442927237356

[mul, add, mul, x2, x2, x3, x1] | 0.000442927237356

[mul, add, mul, x2, x2, x3, x1] | 0.000442927237356

[mul, add, mul, x2, x2, x3, x1] | 0.000442927237356

[mul, add, mul, x2, x2, x3, x1] | 0.000442927237356

[mul, add, mul, x2, x2, x3, x1] | 0.000442927237356

[mul, add, mul, x2, x2, x3, x1] | 0.000442927237356

[mul, add, mul, x2, x2, x3, x1] | 0.000442927237356

[mul, add, mul, x2, x2, x3, x1] | 0.000442927237356

(9 rows)

Each row corresponds to one individual, i.e. one formula. In this example, all rows correspond to the
formula x1 ∗ (x2

2+x3), which is what we wanted to find. The fitness reflects how accurate each individual
is. The lowest the fitness, the most accurate the formula is.
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Appendix E: How to use AdaBoost module in MADlib

Currently our implementation supports only binary classification.

Input

The training data as well as test data is expected to be of the following form:

TABLE tableName (

id INTEGER, // should be 1 indexed

attribute1 DOUBLE PRECISION,

...

attributeN DOUBLE PRECISION,

class INTEGER // should be either 1 or -1

)

Usage

Perform AdaBoost classification loading the whole dataset into memory: (This type of execution is pretty
fast when the dataset is small and fits into memory)

postgres=# SELECT * from madlib.adaboost_train_and_classify (

’trainingSet’, ’testSet’,

’{attribute1, ..., attributeN}’,

’class’, numberOfIterations, pValue

);

When the dataset cannot be fit into memory, the user can use either batched or row-by-row version of
AdaBoost. Perform row-by-row version of AdaBoost classification:

postgres=# SELECT * from madlib.adaboostRow_train_and_classify (

’trainingSet’, ’testSet’,

’{attribute1, ..., attributeN}’,

’class’, numberOfIterations, pValue

);

Perform batched version of AdaBoost classification:

postgres=# SELECT * from madlib.adaboostBatch_train_and_classify (

’trainingSet’, ’testSet’,

’{attribute1, ..., attributeN}’,

’class’, numberOfBatches,

numberOfIterations, pValue

);

Example

This is an over-simplified example of the in-memory execution of AdaBoost classification. Batched and
row-by-row versions are similar. The training and test data:

postgres=# SELECT * from trainingSet;

id | attr1 | attr2 | attr3 | class

----+-------+-------+-------+--------

1 | 85 | 92 | 45 | 1

2 | 85 | 64 | 59 | -1

3 | 86 | 54 | 33 | 1

4 | 91 | 78 | 34 | 1

5 | 87 | 70 | 12 | -1

6 | 98 | 55 | 13 | 1

(6 rows)

postgres=# SELECT * from testSet;

id | attr1 | attr2 | attr3 | class

----+-------+-------+-------+--------
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1 | 95 | 82 | 15 | -1

2 | 86 | 54 | 54 | 1

3 | 88 | 64 | 43 | 1

4 | 81 | 70 | 46 | 1

5 | 97 | 77 | 10 | -1

6 | 88 | 65 | 12 | -1

(6 rows)

Perform AdaBoost classification:

postgres=# SELECT * FROM madlib.adaboost_train_and_classify (

’trainingSet’, ’testSet’,

’{attr1, attr2, attr3}’,

’class’, 50, 0.05

);

The above query produces the following output summary:

result_table_name

-----------------------------

adaboost_classifier_weights

adaboost_classified_samples

adaboost_confusion_matrix

adaboost_AUC

(4 rows)

Check the contents of the above tables to get the classification results:

postgres=# SELECT * FROM adaboost_classifier_weights;

id | weight

----+-----------------

0 | 0.0492970944955

1 | 0.161430043833

2 | 0.225351747846

3 | 0.225351747846

4 | 0.190980668725

5 | 0.147588697256

(6 rows)

postgres=# SELECT * FROM adaboost_classified_samples;

row_id | score | predicted_class

--------+----------------+-----------------

0 | 12.3265804125 | 1

1 | -12.2369378612 | -1

2 | 11.9033472397 | 1

3 | 11.9033472397 | 1

4 | 10.7171405001 | 1

5 | -12.0688375328 | -1

(6 rows)

postgres=# SELECT * FROM adaboost_confusion_matrix;

tp | fp | fn | tn

----+----+----+----

2 | 2 | 1 | 1

(1 row)

postgres=# SELECT * FROM adaboost_AUC;

auc

----------------

0.444444444444

(1 row)
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