
beatDB: A Large Scale Waveform Feature Repository

Franck Dernoncourt, Kalyan Veeramachaneni, Una-May O’Reilly
CSAIL, MIT

{francky, kalyan,unamay}@csail.mit.edu;

1 Introduction
For typical physiological waveform studies, researchers define a study group within which they
designate case and controls. They extract the group’s waveforms, filter the signals, pre process them
and extract features before iteratively executing, evaluating and interpreting a pre-selected machine
learning algorithm with metrics such as area under the curve and analyses such as variable sensitivity.

Recognizing that a typical study, even with modest quantities of patients, can take 6 to 12 months,
we have asked how this duration can be shrunk and multiple studies can share development ef-
fort. In response we are designing a large scale machine learning and analytics framework, named
beatDB , for mining knowledge from high resolution physiological waveforms. BeatDB is our first
cut at creating very large, open access, repositories of feature-level data derived from continuous
periodic physiological signal waveforms such as electro-cardiograms (ECG) or arterial blood pres-
sure. We have presently processed close to a billion arterial blood pressure beats from MIMIC 2
version 3 waveform database and developed a strategy for feature extraction and discovery which
supports efficient data studies. Thus, beatDB radically shrinks the time of large scale investigations
by judiciously pre-computing beat features which are likely to be frequently used. It supports ag-
ile investigation by offering parameterizations that allow task specific compute and storage tradeoff
decisions to be made when computing additional features and preparing data for machine learning
or visualization. It resolves questions such as: what data abstractions of waveforms are best for
efficient data storage, retrieval and further processing? What features should be pre-processed and
stored vs computed ”on the fly”? What interfaces to machine learning and analytics are generally
useful? Where should the process be agile and modular? How can large scale data be processed
speedily and efficiently? In this paper, we briefly describe beatDB and demonstrate how it supports
hypothesis testing on the entire set of arterial blood pressure data in the MIMIC 2 database.

2 BeatDB
BeatDB addresses a number of potential bottlenecks which occur with large scale physiological data,
i.e. the pre-processing step where signal noise is identified and/or repaired, feature extraction, and
creating aggregates while dealing with gaps in a time series segment. We first identified efficient
data abstractions. Physiological waveforms are periodic with samples which form beats. Prior
to modeling, most waveform analyses transform raw waveforms x(t) into a time series of features
f(t) extracted on a per beat basis to covariates V1...m which are derived via a variety of aggregation
methods [1]. While there is a lot of consensus in terms of what features are extracted from each
beat, there is a lot variety in the aggregation of feature times series into covariates. This arises
because different machine learning algorithms expect data in different representations. For example,
dynamic bayesian networks expect an aggregated time series while a decision tree expects covariates
that can be independent of time.

To facilitate efficient pre-processing we had to deal with frequent breaks in the data which arise
because of patient movement and sensor sensitivity. These breaks make a series falsely contiguous
and require it to be separated into multiple parts beatDB calls segments. Additionally, artifacts and
noise in recording renders many beats (approx. 300 million of 1.2 billion) invalid. To preserve as
much source data as possible, we evaluated the validity of each beat using the signal quality metric
defined in [2] and beatDB records this validity per beat.

We identified at least 120 beat features that will be frequently used and which are relatively quick
to compute: features with medical relevance like diastolic, systolic pressures and beat duration;

1



time domain features like mean; and morphologic features - distance between two subsequent beats
and features extracted from frequency domain. beatDB will eventually hold these pre-computed
features per beat at an approximate storage cost of approximately 8GB per feature. The database
is organized along patientID, indices for start time and stop time for a beat and the features. There
are currently approximately 1.2 billion beats from approximately 6000 patients and 18 features.
The beatDB feature extraction engine runs in parallel on hundreds of nodes on a private cloud,
extracting features for one patient at a time and populating our database. This data is accompanied
by software that allow compositions of data to support multi-scale, multi-representational learning.
This software has strategic parameterizations which expose data processing options and facilitates
agile distributed computation.

Joint-time frequency domain features like wavelets require two different approaches because for
each beat a wavelet generates a large matrix of scale and shift coefficients. A specific scale and
shift parameter set can be extracted or a “service” yet to be implemented) will employ a search and
score methodology to identify the best possible set of wavelet coefficients for the problem at hand
by using a user defined metric. For example, for a classification problem cross validation accuracy
would be used to rank the quality of a set of candidate wavelet coefficients.

BeatDB has sub-frameworks which support knowledge discovery. The analytics sub-framework
provides descriptive statistics such as how many patients had an acute hypotensive event, informa-
tion content of patients’ segments (measured via compressibility) and patient segment quality. In the
hypothesis testing sub-framework the clinician posits a hypothesis that distribution of an assembly
of data under a certain condition (case) is in fact statistically different than its distribution when the
condition is not present (control). It is described further in Section 3. Two other sub-frameworks
are pending integration. The clustering sub-framework will use unsupervised learning to cluster the
patient time series while establishing cluster labels. It will allow a clinician to request knowledge
about a patient who is similar to a cluster. Multi-representational learning will support a number
of machine learning algorithm like dynamic Bayesian networks and several classifier algorithms. We
also plan a sub-framework for crowd sourced feature discovery. Researchers will be able propose
a new beat feature and submit a script that extracts it from a beat. Without computing this feature for
the entire DB of beats, beatDB will estimate its correlation with existing features via bootstrapping.
This will inform the value of full extraction.

3 Hypothesis Testing Framework
BeatDB’s hypothesis testing framework permits researchers to posit and test whether there is dis-
criminatory power in the data with regard to a condition, or whether there any predictive precursors
to it. The condition may be externally defined, i.e. via clinical data, or be detectable within a blood
pressure waveform. To accommodate a “hunch” or inexact notion, the framework allows a hypothe-
sis to be imprecisely expressed. This is accomplished by parameterizing how a condition is defined,
how covariates are aggregated and how prediction is defined (lead, lag, features). In detail:

Step 1: Define condition The researcher selects patients known to have experienced the condition
and some controls. For example, an acute hypotensive event defined by mean arterial pressure
could be of interest. BeatDB then uses a software scanner script, composed by the researcher,
to scan segments and identify the condition’s start i and stop j time indices, where present. The
condition’s definition is parameterized per Table 1. The pre-condition part of the segment, up to the
start time index, f(t = 1 . . . i − 1) becomes the signal which is examined for precursors or tested
for discriminatory power.

Step 2: Define data aggregations: The pre-condition part of the segment is divided into non-
overlapping windows and any number of covariates, e.g. different moments or trend, are formed.
The researcher selects covariates parameterizations per Table 1.

Step 3: Define prediction assumptions: The researcher chooses the lead and lag for the prediction
problem and selects a machine learning algorithm, e.g decision trees, SVM, logistic regression.

Step 4: Choose hypothesis evaluation metrics: The researcher selects an evaluation metric e.g.
area under the curve, Bayesian risk for a given cost matrix or Neyman Pearson criterion.

BeatDB next sweeps the combined ranges of the parameters experimentally. For each parameter set,
it returns a result, according to the researcher selected metric so that a precise (e.g. the strongest
exact) hypothesis can be identified.

2



Parameter class Parameter names
Condition definition parameters Window size, threshold, frequency,

variable
Prediction parameters Lag, lead, features
Data aggregation parameters Sub-aggregation window, sub-

aggregation function, aggregation
window, aggregation functions

Table 1: Hypothesis testing framework parameterization

3.1 An Example: Discriminating Acute Hypotensive Events
We demonstrate the framework with a hypotension condition. An acute hypotensive event (AHE) is
defined in terms of a variable when, for some condition window,, with a minimum frequency (%-
age), blood pressure dips below a threshold (in mmHg). For example, 90% of average MAP values
in a 30 minute window dip below 60 mmHg. A clinician is willing to select a precise definition of
the threshold on the basis on discriminatory information. The framework can vary this threshold
(here between [50, 80]) and, per Figure 1, provide useful information on the resulting data. Here, it
indicates how many unique patients experienced AHE, how many unique AHE cases were identified
and how the case to control ratio changed. Per Table 2, a clinician then defines values for the data
aggregation parameters and value ranges for prediction lead and lag.

Figure 1: (Left): Number of patients with AHE cases as we change the threshold. (Center) To-
tal number of AHE cases present as we change the threshold for the condition. (Right): Balance
between the AHE and non AHE cases as the thresholds are varied.

Parameter names Parameter choice
Condition definition: window duration 30 minutes
Condition definition: variable minute average MAP (mean arterial pressure)
Condition definition: variable threshold [56, 58, 60, 62, 64] mmHg
Condition definition: frequency 90% minimum
Prediction definition: lag [10, 20, 30, 60] minutes
Prediction definition: lead [10, 20, 30, 60, 120, 180] minutes
Prediction definition: covariates 14 covariates
Sub-aggregation window 1 minute
Sub-aggregation function Mean
Aggregation window Prediction definition: lag
Aggregation functions mean, standard deviation, kurtosis, skew, trend
Machine learning algorithm logistic regression
Hypothesis evaluation metric AUC (area under the ROC curve)

Table 2: Parameter Sweep for AHE Discrimination. The 14 covariates are: root-mean-square, kurto-
sis, skewness, systolic blood pressure, diastolic blood pressure, pulse pressure, beat duration, systole
duration, diastole duration, pressure area during systole, standard deviation, crest factor, mean, mean
arterial pressure.

The framework then applied the 5 different aggregate functions to 14 different per beat features,
resulting in 70 features per training exemplar. Then we prepared a dataset for each parameter com-
bination (5 MAP thresholds, 4 lags and 6 leads, resulting in 120 combinations). On these, we

3



executed 10-fold cross validation on our lab’s private cloud using approximately 2 nodes with 24
VCPUs each for 48 hours. The results across different condition thresholds and prediction leads and
lags can be viewed in Figures 2 and 3.

3.2 Results and Discussion
Figure 2 (left) shows the area under the ROC curve (AUC) for different lead times, given maximum
lag of 60 minutes for 5 different MAP thresholds. The area under the curve drops as lead time
increases. The prediction problem becomes easiest when a threshold of 56 mmHg is applied to
average MAP. As this threshold increases, predicting AHE, given this data, becomes harder. This
confirms expectations because 56 mmHg is an extreme threshold point and we would expect that
the cohort of patients with such an extreme condition will be significantly be different then the rest
of the patients. Figure 2(right) shows the AUC when we change the lag and keep the lead at its
minimum 10 minute duration. In this case, we see that the performance improves as we increase the
lag or historical data taken into account. This is intuitive because a longer lag provides more signal
to learn from.

Figure 2: Discriminatory strength in terms of Area Under the Curve for the classifiers for different
condition threshold with prediction lead and lag sweeps.

Next, in order to explore a point solution on the ROC curve, we chose a true positive rate of 90% for
AHE and evaluated the false positive rate. Figure 3 shows the results for different lags and leads for
different definitions of AHE. Here, again, more signal history helps prediction.

Figure 3: False positive rates achieved for a true positive of 90% as we changed the prediction
problem parameters and the thresholds for AHE determination.

References
[1] JH Henriques and TR Rocha. Prediction of acute hypotensive episodes using neural network

multi-models. In Computers in Cardiology, 2009, pages 549–552. IEEE, 2009.
[2] JX Sun, AT Reisner, and RG Mark. A signal abnormality index for arterial blood pressure

waveforms. In Computers in Cardiology, 2006, pages 13–16. IEEE, 2006.

4


	Introduction
	BeatDB
	Hypothesis Testing Framework
	An Example: Discriminating Acute Hypotensive Events
	Results and Discussion


