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Chapter 1

Introduction

Fuzzy logic is an extension of Boolean logic by Lotfi Zadeh in 1965 based on the

mathematical theory of fuzzy sets, which is a generalization of the classical set theory.

By introducing the notion of degree in the verification of a condition, thus enabling a

condition to be in a state other than true or false, fuzzy logic provides a very valuable

flexibility for reasoning, which makes it possible to take into account inaccuracies and

uncertainties.

One advantage of fuzzy logic in order to formalize human reasoning is that the rules

are set in natural language. For example, here are some rules of conduct that a driver

follows, assuming that he does not want to lose his driver’s licence:

If the light is red... if my speed is high... and if the light is

close...

then I brake hard.

If the light is red... if my speed is low... and if the light is

far...

then I maintain my

speed.

If the light is or-

ange...

if my speed is aver-

age...

and if the light is

far...

then I brake gently.

If the light is green... if my speed is low... and if the light is

close...

then I accelerate.

Intuitively, it thus seems that the input variables like in this example are approximately

appreciated by the brain, such as the degree of verification of a condition in fuzzy

logic.

To exemplify each definition of fuzzy logic, we develop throughout this introductory

course a fuzzy inference system whose specific objective is to decide the amount of

1
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a tip at the end of a meal in a restaurant, depending on the quality of service and

the quality of the food.

1.1 Set theory refresher

A set is a Many that allows itself to be thought of as a One. Georg

Cantor.

To begin with, a quick refresher on the classical sets can be useful if you haven’t

dealt with them for long time.

The classical set theory simply designates the branch of mathematics that studies

sets. For example, 5, 10, 7, 6, 9 is a set of integers. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

is the set of integers between 0 and 10. ’s’ ’d’; ’z’, ’a’ is a set of characters. ”Site”,

”of”, ”zero” is a set of words. We can also create sets of functions, assumptions,

definitions, sets of individuals (that is to say, a population), etc. and even sets of

sets!

Note that in a set, the order does not matter: 7, 6, 9 denotes the same set as 9, 7, 6.

However, to improve readability, it is convenient to classify the elements in ascending

order, ie 6, 7, 9. Usually, a set is denoted by a capital letter: thus, we write A = 6,

7, 9. The empty set is denoted ∅: it is a remarkable since it contains no element.

This seems unnecessary at first glance, but in fact, we will often use it.

Sets are often represented in graphic form, typically by circles, as figure 1.1 illustrates.

Figure 1.1: Graphical representation of the set {1, 5, 6, 7, 10}

The concept of belonging is important in set theory: it refers to the fact that an

element is part of a set or not. For example, the integer 7 belongs to the set 6,

7, 9. In contrast, the integer 5 does not belong to the set 6, 7, 9. Membership is
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symbolized by the character in the non-membership and by the same symbol, but

barred ossible. Thus, we have 7 ∈ {6, 7, 9} and 5 /∈ {6, 7, 9}.

A membership function (also called indicator function or characteristic function) is a

function that explicit membership or not a set E. Let f be the characteristic function

of the set E = {6, 7, 9}, and x is any integer:

TODO Math formula

This concept of membership is very important for this course because fuzzy logic is

based on the concept of fuzzy membership. This simply means that we can belong to

a set to 0.8, in contrast to classical set theory where as we have just seen membership

is either 0 (not owned) or 1 (part).

In order to manipulate classical ensembles and make something interesting, we define

a set of operations, which are very intuitive. Figures 1.2, 1.2 and

Figure 1.2: Union of two sets, denoted A ∪ B = {x ∈ Aextorx inB}. A ∪ B
corresponds to the blue area. For example if A = {6; 7; 9} et B = {1; 5; 6; 7; 10},
then A ∪B = {1; 5; 6; 7; 9; 10}.

Figure 1.3: Intersection of two sets, denoted A ∩ B = {x ∈ Aetx ∈ B}. For

example, if A = {6; 7; 9} and B = {1; 5; 6; 7; 10}, then A ∩B = {6; 7}.
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Figure 1.4: Here is the graphical representation of the sets A = {6, 7, 9} and

B = {1, 5, 6, 7, 10}. We see immediately that A ∪ B = {1, 5, 6, 7, 9, 10} and

A capB = {6, 7}.

But classical set theory is not the subject of this course, so we stop here. However,

as fuzzy logic is based on the concept of fuzzy, we see now the kind of problems that

we face and that we will solve in the next sections: how to define such a union if

memberships are not either 0 or 1?
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Chapter 2

Fuzzy logic

As complexity rises, precise statements lose meaning and meaningful

statements lose precision. Albert Einstein.

2.1 Fuzzy sets

Fuzzy logic is based on the theory of fuzzy sets, which is a generalization of the

classical set theory. Saying that the theory of fuzzy sets is a generalization of the

classical set theory means that the latter is a special case of fuzzy sets theory. To

make a metaphor in set theory speaking, the classical set theory is a subset of the

theory of fuzzy sets, as figure 2.1 illustrates.

Figure 2.1: ”The classical set theory is a subset of the theory of fuzzy sets”

Fuzzy logic is based on fuzzy set theory, which is a generalization of the classical set

theory [Zadeh, 1965]. By abuse of language, following the habits of the literature,

we will use the terms fuzzy sets instead of fuzzy subsets. The classical sets are also

called clear sets, as opposed to vague, and by the same token classical logic is also

known as Boolean logic or binary.

5
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Figure 2.2: Membership function characterizing the subset of ’good’ quality of

service

The figure 2.2 shows the membership function chosen to characterize the subset of

’good’ quality of service.

Definition 1.

Let X be a set. A fuzzy subset A of X is characterized by a membership func-

tion. fa : X → [0, 1]. (In theory, it is possible that the output is greater than 1,

but in practice it is almost never used.)

Note: This membership function is equivalent to the identity function of a clas-

sical set.

In our tip example, we will redefine membership functions for each fuzzy set of each

of our three variables:

• Input 1: quality of service. Subsets: poor, good and excellent.

• Input 2: quality of food. Subsets: awful and delicious.

• Output: tip amount. Subsets: low, medium and high.

The shape of the membership function is chosen arbitrarily by following the advice

of the expert or by statistical studies: sigmoid, hyperbolic, tangent, exponential,

Gaussian or any other form can be used.

The figure 2.3 shows the difference between a conventional set and a fuzzy set

corresponding to a delicious food.

The figure 2.4 compare the two membership functions corresponding to the previous

set.
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Figure 2.3: Graphical representation of a conventional set and a fuzzy set

Figure 2.4: Comparison between a identity function of a conventional set and a
membership function of fuzzy set

In order to define the characteristics of fuzzy sets, we are redefining and expanding

the usual characteristics of classical sets.

Fuzzy set have a number of properties. Here are definitions of the most important

properties, but they are notnecessary for understanding of the course. If you want,

you can go now directly to the next section.

Let X be a set and A a fuzzy subset of X and µA the membership function charac-

terizing it. µA(x) is called the membership degree of x in A.

Definition 2.

The height of A, denoted h(A), corresponds to the upper bound of the codomain

of its membership function: h(A) = sup{µA(x) | x ∈ X}.

Definition 3.

A is said to be normalised if and only if h(A) = 1. In practice, it is extremely

rare to work on non-normalised fuzzy sets.

Definition 4.

The support of A is the set of elements of X belonging to at least some A (i.e.
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the membership degree of x is strictly positive). In other words, the support is the

set supp(A) = {x ∈ X | µA(x) > 0}.

Definition 5.

The kernel of A is the set of elements of X belonging entirely to A. In other words,

the kernel noy(A) = {x ∈ X | µA(x) = 1}. By construction, noy(A) ⊆ supp(A).

Definition 6.

An α-cut of A is the classical subset of elements with a membership degree greater

than or equal toα : α-cut(A) = {x ∈ X | µA(x) > α}.

Another membership function for an average tip through which we have included the

above properties is presented in Figure 2.5.

Figure 2.5: A membership function with properties displayed

We can see that if A was a conventional set, we would simply have supp(A) = noy(A)

and h(A) = 1 (ou h(A) = 0 si A = ∅). Our definitions can therefore recover the

usual properties of classical sets. We will not talk about the cardinality property

because we will not use this concept later in this course.

2.2 The linguistic variables

The concept of membership function discussed above allows us to define fuzzy sys-

tems in natural language, as the membership function couple fuzzy logic with lin-

guistic variables that we will define now.

Definition 7.

Let V be a variable (quality of service, tip amount, etc.), X the range of values of
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the variable and TV a finite or infinite set of fuzzy sets. A linguistic variable

corresponds to the triplet (V,X, TV ).

Figure 2.6: Linguistic variable ’quality of service’

Figure 2.7: Linguistic variable ’quality of food’
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Figure 2.8: Linguistic variable ’tip amount’

When we define the fuzzy sets of linguistic variables, the goal is not to exhaustively

define the linguistic variables. Instead, we only define a few fuzzy subsets that will

be useful later in definition of the rules that we apply it. This is for example the

reason why we have not defined subset ”average” for the quality of the food. Indeed,

this subset will not be useful in our rules. Similarly, it is also the reason why (for

example) 30 is a higher tip than 25, while 25 however belongs more to the fuzzy set

”high” as 30: this is due to the fact that 30 is seen not as high but very high (or

exorbitant if you want to change adjective). However, we have not created of fuzzy

set ”very high” because we do not need it in our rules.

2.3 The fuzzy operators

In order to easily manipulate fuzzy sets, we are redefining the operators of the classical

set theory to fit the specific membership functions of fuzzy logic for values strictly

between 0 and 1.

Unlike the definitions of the properties of fuzzy sets that are always the same, the

definition of operators on fuzzy sets is chosen, like membership functions. Here are

the two sets of operators for the complement (NOT), the intersection (AND) and

union (OR) most commonly used:

Copyright © 2013 - Franck Dernoncourt <franck.dernoncourt@gmail.com>.
This tutorial is under the Creative Commons-BY-SA license. You are welcome to distribute it provided that
you keep the license and cite the author of this document.

http://francky.me

http://www.francky.me/
mailto:franck.dernoncourt@gmail.com
mailto:franck.dernoncourt@gmail.com
http://francky.me


Introduction to fuzzy logic, by Franck Dernoncourt - (Home Page) (E-mail) Page 11 of 20

Name Intersection AND:

µA∩B(x)

Union OU: µA∪B(x) Complement NOT:

µĀ(x)

Zadeh Operators

MIN/MAX

min (µA(x), µB(x)) max (µA(x), µB(x)) 1− µA(x)

Probabilistic

PROD/PROBOR

µA(x)× µB(x) µA(x) + µB(x) −
µA(x)× µB(x)

1− µA(x)

With the usual definitions of fuzzy operators, we always find the properties of com-

mutativity, distributivity and associativity classics. However, there are two notable

exceptions:

• In fuzzy logic, the law of excluded middle is contradicted: A ∪ Ā 6= X, i.e.

µA∪Ā(x) 6= 1.

• In fuzzy logic, an element can belong to A and not A at the same time:

A ∩ Ā 6= ∅, i.e. µA∩Ā(x) 6= 0. Note that these elements correspond to the set

supp(A)− noy(A).

2.4 Reasoning in fuzzy logic

In classical logic, the arguments are of the form:{
If p then q

p true then q true

In fuzzy logic, fuzzy reasoning, also known as approximate reasoning, is based on

fuzzy rules that are expressed in natural language using linguistic variables which we

have given the definition above. A fuzzy rule has the form:

If x ∈ A and y ∈ B then z ∈ C, with A, B and C fuzzy sets.

For example:

’If (the quality of the food is delicious), then (tip is high)’.

The variable ’tip’ belongs to the fuzzy set ’high’ to a degree that depends on the

degree of validity of the premise, i.e. the membership degree of the variable ’food

quality’ to the fuzzy set ’delicious ’. The underlying idea is that the more propositions

in premise are checked, the more the suggested output actions must be applied. To

determine the degree of truth of the proposition fuzzy ’tip will be high’, we must

define the fuzzy implication.

Like other fuzzy operators, there is no single definition of the fuzzy implication:

the fuzzy system designer must choose among the wide choice of fuzzy implications
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already defined, or set it by hand. Here are two definitions of fuzzy implication most

commonly used:

Name Truth value

Mamdani min (fa(x), fb(x))

Larsen fa(x)× fb(x)

Notably, these two implications do not generalize the classical implication. There are

other definitions of fuzzy implication generalizing the classical implication, but are

less commonly used.

If we choose the Mamdani implication, here is what we get for the fuzzy rule ’If (the

food quality is delicious), then (tip is high)’ where the food quality is rated 8.31 out

of 10:

Figure 2.9: Example of fuzzy implication

The result of the application of a fuzzy rule thus depends on three factors:

1. the definition of fuzzy implication chosen,

2. the definition of the membership function of the fuzzy set of the proposition

located at the conclusion of the fuzzy rule,

3. the degree of validity of propositions located premise.

As we have defined the fuzzy operators AND, OR and NOT, the premise of a fuzzy

rule may well be formed from a combination of fuzzy propositions. All the rules of

a fuzzy system is called the decision matrix. Here is the decision matrix for our tip

example:

If the service is bad or the food is awful then the tip is low

If the service is good then the tip is average

If the service is excellent or the food is delicious then the tip is high
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The figure 2.10 shows what we get for fuzzy rule ’If (the service is excellent and the

food is delicious), then (tip is high)’ where the quality of service is rated 7.83 out of

10 and the quality of food 7.32 out of 10 if we choose the Mamdani implication and

the translation of OR by MAX.

Figure 2.10: Example of fuzzy implication with conjunction OR translated into
a MAX

We will now apply all the 3 rules of our decision matrix. However, we will obtain

three fuzzy sets for the tip: we will aggregate them by the operator MAX which is

almost always used for aggregation. The figure ?? shows this aggregation.

Figure 2.11: Example of fuzzy implication using the decision matrix
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As we see, we now has to make the final decision, namely decide how much the tip

will be knowing that the quality of service is rated 7.83 out of 10 and quality of food

7.32 out of 10. This final step, which allows to switch from the fuzzy set resulting

from the aggregation of results to a single decision, is called the defuzzification.

2.5 The defuzzification

As with all fuzzy operators, the fuzzy system designer must choose among several pos-

sible definitions of defuzzification. A detailed list can be found in the research article

[Leekwijck and Kerre, 1999]. We will briefly present the two main methods of de-

fuzzification: the method of the mean of maxima (MeOM) and the method of center

of gravity (COG).

The MeOM defuzzification sets the output (decision of the tip amount) as the average

of the abscissas of the maxima of the fuzzy set resulting from the aggregation of the

implication results.

Décision =
∫
S y·dy∫
S dy

where S = {ym ∈ R,µ(ym) = SUPy∈R(µ(y))}
and R is the fuzzy set resulting from the aggregation of the implication results.

Figure 2.12: Defuzzification with the method of the mean of maxima (MeOM)

The COG defuzzification is more commonly used. It defines the output as corre-

sponding to the abscissa of the center of gravity of the surface of the membership

function characterizing the fuzzy set resulting from the aggregation of the implication

results.
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Décision =
∫
S y·µ(u)·dy∫
S µ(u)·dy

Figure 2.13: Defuzzification with the method of center of gravity (COG)

This definition avoids the discontinuities could appear in the MeOM defuzzifica-

tion, but is more complex and has a greater computational cost. Some work as

[Madau D., 1996] seek to improve performance by searching other methods as ef-

fective but with a lower computational complexity. As we see in the two figures

showing the MeOM and COG defuzzifications applied to our example, the choice of

this method can have a significant effect on the final decision.

2.6 Conclusions

In the definitions, we have seen that the designer of a fuzzy system must make a

number of important choices. These choices are based mainly on the advice of the

expert or statistical analysis of past data, in particular to define the membership

functions and the decision matrix.

Here is an overview diagram of a fuzzy system:

In our example,

• the input is ’the quality of service is rated 7.83 out of 10 and quality of food

7.32 10’,
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Figure 2.14: Overview diagram of a fuzzy system:

• the fuzzifier corresponds to the 3 linguistic variables ’service quality’, ’food

quality’ and ’tip amount’,

• the inference engine is made of the choice of fuzzy operators,

• the fuzzy knowledge base is the set of fuzzy rules,

• the defuzzifier is the part where has to be chosen the method of defuzzification,

• the output is the final decision: ’the tip amount is 25.1’.

It is interesting to see all the decisions based on each variable with our fuzzy inference

system compared to the decisions that we would get using classical logic:

Figure 2.15: Decisions of a system based on fuzzy system
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Figure 2.16: Decisions of a system based on classical logic

Thus, fuzzy logic allows to build inference systems in which decisions are without

discontinuities, flexible and nonlinear, i.e. closer to human behavior than classical

logic is. In addition, the rules of the decision matrix are expressed in natural language.

This has many advantages, such as include knowledge of a non-expert computer

system at the heart of decision-making model or finer aspects of natural language.

We will see in the third chapter how we can train a fuzzy inference system for the

specific problem.
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Chapter 3

Training fuzzy inference systems

3.1 Neuro-fuzzy systems

Neuro-fuzzy systems were introduced in the thesis of Jyh-Shing Roger Jang in 1992

under the name “Adaptative-Networks-based Fuzzy Inference Systems” (ANFIS)

[Jangi, 1992]. They use the formalism of neural networks by expressing the structure

of a fuzzy system in the form of a multilayer perceptron.

A multilayer perceptron (MLP) is a neural network without cycle. The input layer is

given a vector network and the network returns a result vector in the output layer.

Between these two layers, the elements of the input vector are weighted by the

weights of the connections and mixed in the hidden neurons located in the hidden

layer. Figure 3.1 illustrates an example of a feedforward neural network.

Figure 3.1: Example of a feedforward neural network
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Several activation functions for the output layer are commonly used, such as linear,

logistic or softmax. Similarly, there are several error backpropagation algorithms

that optimize the learning of weights from the mistakes made between the values

computed by the network and the actual values: Conjugate gradient optimization,

Scaled Conjugate Gradient, Quasi-Newton optimization, and so on.

Figure 3.2 presents an example of the organization of a multilayer perceptron repre-

senting the neuro-fuzzy system:

Figure 3.2: Structure of a neuro-fuzzy system

TODO: expand

3.2 Evolutionary computation

TODO
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