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Abstract

The medial Reticular Formation (mRF) is located in the brainstem: it receives many

sensory inputs and it can control motor actions through its projections on the spinal

cord and cranial nerves. The mRF is phylogenetically one of the oldest neural struc-

tures of the brainstem, the latter being regarded as one of the oldest centers of the

central nervous system. Subsequently it seems to be a low-level system for action

selection.

The first model of the mRF was proposed by [Kilmer et al., 1969], who already pro-

posed that the mRF could be a ”mode selector”. [Humphries et al., 2005] tested the

efficiency of this model in the minimal survival task defined in [Girard et al., 2003].

It performed poorly, but another version of it that included artificially evolved weights

performed quite honorably. As a result, [Humphries et al., 2006] proposed a second

model of the mRF, based on neural network formalism and taking into account new

anatomical data. Nevertheless, it showed poor performances in the minimal survival

task and turns out not to be anatomically very plausible.

In this Master’s Thesis, we propose a new model of the mRF:

� constrained by anatomical information about its structure,

� constructed based on neural networks generated by artificial evolution,

� assessed on tasks of action selection.

The model we obtained successfully manages the selection tasks, indicating that

the mRF can be used as an action selection system. We will also demonstrate

an anatomical property of the mRF, which coupled with the results of the paper

[Humphries et al., 2006] shows that it is very likely that the mRF network has a

small-world structure.

This project was funded by the ANR (ANR-09-EMER-005-01) in the project

EvoNeuro (http://pages.isir.upmc.fr/EvoNeuro).
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Chapter 1

Introduction

This chapter presents an overview of the median reticular formation: after a few

preliminary remarks, we will summarize studies that suggest that the mRF is a proto-

system of action selection. In a second step, we will present a synopsis of all the

known anatomical data, which can be used to model the mRF. Lastly, we will explore

the only two existing models of the mRF to see their shortcomings, while leveraging

their strengths to build our own.

1.1 Preliminary remarks

The reticular formation, which includes the medial reticular formation, is a component

of central nervous system which takes its name (from the Latin textsl reticulum

meaning net) from its dense, intricate, anatomical presentation. Located on the floor

of the brainstem between the medulla oblongata and the midbrain, it projects and

receives nerve fibers throughout the spinal cord as well as many other components of

the central nervous system such as the cerebral cortex, hypothalamus or cerebellum

(see figures 1.1, 1.2 et 1.3).

We will focus in this report to a part of the reticular formation called median reticular

formation, which we will shorten by mRF.

3
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Figure 1.1: Brainstem in the human brain (part in red)

Figure 1.2: Location of the MRF (black area) in the brain of one cat. RF :
reticular formation. CPu : caudate-putamen. SC : superior colliculus. SN :
substantia nigra. Source : [Humphries et al., 2006]

Figure 1.3: Projections from and to the mRF. Source : [Humphries et al., 2005]
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The phylogeny of the nervous system shows that the mRF is one of the earliest neural

structures of the brainstem, which in turn is what can be considered as one of the old-

est centers of the central nervous system. Thus, among the different animal species,

the mRF is very similar, as shown for example by [Ramón-Moliner and Nauta, 1966]

between sharks and humans, allowing us to aggregate data directly from studies on

different animals.

1.2 Action selection

Action selection can be defined by the crucial issue facing any autonomous agent,

be it animal or robotic in nature, which is to continuously select and coordinate

their behavior with a view to carry out its long-term goals, such that the survival,

reproduction, or any other task defined by the designer in the case of a robot. The

animals must necessarily implement effective solutions for selecting the action, hence

our research within the nervous system of such a mechanism.

Several data suggest that the mRF is involved in the selection of the action, we will

briefly summarize in this section.

First, the mRF seems to have all the information which monitoring systems have

access to, and both external and internal senses of an animal: it thus receives a con-

siderable amount of sensory input, such as synthesized by [Humphries et al., 2007],

in particular from of the sensory, respiratory, visceral, vestibular, proprioceptive,

nociceptive or cardiovascular systems. These data are corroborated by the vari-

ous recordings made on the mRF showing that it reacts to very different stimuli

[Segundo et al., 1967, Bowsher, 1970, Langhorst et al., 1983].

In a complementary manner, the mRF projects in mass on all levels of the spinal cord

and cranial nerves [Torvik and Brodal, 1957, Eccles et al., 1976, Jones, 1995], which

gives it the ability to control both the axial musculature that face. Therefore, the

mRF has the inputs and outputs necessary for any candidate action selection system.

It has been experimentally shown that rats who had undergone a complete cut in

the posterior brainstem, specifically posterior to thalamus and the hypothalamus, by

removing the entire brain rostral to this cross-section (see the 3 decerebration lines

in Figure ??), had a surprisingly coherent behavior [Woods, 1964], except for errors

caused by the loss of sight, smell and problems of regulation hormone. The rats of the

experiment were still able to make selections of low-level action, such as eat, move,

drink or sleep according to the stimuli. The very important results of this experiment

were later confirmed by [Lovick, 1972, Berntson and Micco, 1976, Berridge, 1989],
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which emphasized the fact that rats can perform combinations of coordinated actions,

such as holding, biting and chewing food, combinations more complex than simple

reflexes which may emanate from the spinal cord.

Figure 1.4: Decerebration lines rostral to the brainstem. The dashed lines show
the location of the three most-common decerebration lines all the brain rostral
to the line is removed, leaving hindbrain and spinal cord intact. GP : globus
pallidus. RF : reticular formation. SN : substantia nigra. STN : subthalamic
nucleus. SC : superior colliculus. Source : [Humphries et al., 2007]

To verify the role of the mRF, local electrical and chemical stimulation were

made on normal animals. These stimuli made them change their behavior, such

as eating, sleeping, drinking, escape, or seek to wash [Magoun and Rhines, 1946,

Glickman and Schiff, 1967]. These results show the magnitude of the different be-

haviors that control at least part of the MRF.

Conversely, other studies have focused on the impact of injuries to the mRF. They

demonstrate severe behavioral disorders, including sleep disorders, the study sub-

jects showed a phase shift of sleep between the brain and the rest of the body

[Birkmayer and Pilleri, 1966] as well as frequent alternations between deep sleep and

frequent extreme rage [Jouvet, 1967]. [Parvizi and Damasio, 2003] have even shown

that lesions in certain parts of the mRF can cause coma and even death in humans.

Lastly, unlike most neural structures, mRF cells exist at birth

[Hammer Jr et al., 1981], which may hint of the importance of their presence

for the survival of the individual.

In light of these studies, it seems reasonable to conjecture that the mRF is a proto-
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system of selection of the action.

1.3 Anatomical data

In this section, we will gather all the anatomical data that will be useful to construct

a model of the mRF.

First general remark, the neuroscience literature shows that the action selection mech-

anisms are implemented in two different architectures in the mammalian brain:

� a centralized architecture style, where each neural module projects onto a cen-

tral decision-making. The basal ganglia is supposed to have this type of archi-

tecture [Redgrave et al., 1999, Prescott et al., 1999].

� a modular architecture, where each neural module is competing, inhibiting or

exciting the other modules. The mRF would is supposed to have this type of

architecture [Humphries et al., 2007].

One feature of the mRF is its cluster organization (also known as chips or stacks)

[Scheibel and Scheibel, 1967], as shown by the sagittal section of the mRF shown in

Figure 1.5.

Figure 1.5: Sagittal section of the mRF of a rat, showing its cluster organization.
Source : [Scheibel and Scheibel, 1967]

The mRF of a rat measures approximately 7 mm on the rostral-caudal axis and

contains between 35 and 75 clusters [Humphries et al., 2006]. The mRF of a frog

contains circa 0.75 million neurons, whereas the mRF of a human being contains 2
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million [Kilmer et al., 1969]. Clusters have the same size in terms of size and number

of neurons [Humphries et al., 2007]. They all receive the same inputs and project to

the same areas [Humphries and Prescott, 2006].

There are two main types of neurons in the mRF:

� The interneurons: of small or medium size, they are inhibitory (some excep-

tions exist though) and they project almost exclusively within their own cluster,

both to projection neurons and to interneurons. They represent about 20% of

neurons in the mRF [Humphries et al., 2006].

� The projection neurons: of medium to high size, they are excitatory (some

exceptions exist though) and they project almost exclusively outside their own

cluster to other clusters or outside the mRF [Humphries et al., 2006]. Approxi-

mately 45% of the input synapses of projection neurons are GABAergic, that is

to say inhibitory, i.e. interneurons [Humphries et al., 2007]. Projection neurons

represent about 80% of neurons in the mRF.

The probability P (c) that a projection neuron projects on a given cluster is the sub-

ject of two different models in the literature. According to [Grantyn et al., 1987],

P (c) = 0.25 regardless of the source cluster (i.e. where the projection neuron’s nu-

cleus is located) and the destination cluster (to which the projection neuron projects).

According to [Kilmer et al., 1969], the probability P (c) depends on the distance be-

tween the cluster source and the destination cluster: P (c) = d−a, where d is the

distance and a a parameter greater than or equal to 1.

The probability P (p) that a projection neuron projects on a given neuron, given that

projects to the cluster of the latter, and the probability P (l) that an interneuron

forms a connection with a given neuron’s cluster are both low, probably less than 0.1

according to [Schuz, 1998, Albert and Barabási, 2002].

To sum up, given the anatomical constraints, six parameters completely describe the

structure of the network:

� c : the number of clusters (between 35 and 75) ;

� n : the number of neurons in a cluster (about 1500000/55 ≈ 30000) ;

� p : the percentage of projection neurons (about 80%). The percentage of

interneurons is therefore 1− p ;

� P (c) : the probability that a projection neuron projects on a given cluster

(P (c) = 0.25 or P (c) = d−a with d being the distance and a a parameter) ;
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� P (p) : the probability that a projection neuron projects on given neuron, given

that it projects into the cluster of the latter (P (p) < 0.1) ;

� P (l) : the probability that an interneuron forms a connection with a given

neuron’s cluster (P (l) < 0.1).

After presenting the known anatomical data on the MRF, we will now present a proof

that we have made while reviewing the anatomical data that P (l) > 45× P (p).

1.4 Proof of P (l) > 45× P (p)

Let’s define a few notations, in addition to those seen in the previous section:

� P (I → I) the probability that an interneuron forms a connection with a given

interneuron in the same cluster (the sign rightarrow symbolizes a connection

in the graph) ;

� P (I → P ) the probability that interneuron forms a connection with a given

projection neuron in the same cluster ;

� nbI the number of interneurons in a cluster of the mRF ;

� nbP the number of projection neurons in a cluster of the MRF.

Let’s assume that :

� an interneuron projects only in its own cluster (the number of projections from

interneurons outside their cluster is negligible) ;

� P (c) = 0.25. This is one of the two known anatomical models for P (c).

The second model, by conditioning P (c) on the distance between the source

cluster and the destination cluster, promotes a structure of type small-world

compared to 0.25 as shown in Figure 1.6. Therefore, this assumption will

generalize the results of the demonstration in the second model, since a small-

world structure, intuitively and as also shown in Figure 1.6, requires a high

number of connections in a cluster (defined by P (l)) compared to the number

of inter-cluster connections (defined by P (p)), which favors the second model

in comparison to the first one (P (c) = 0.25).

By construction, we have:

� P (l) = P (I → I) + P (I → P ) (because we do not consider that interneurons

project in their own cluster) ;
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� nbP /(nbP + nbI) = 80% (the proportion of projection neurons, known in the

literature), therefore nbP = 4× nbI .

As we have seen previously, 45% of the synapses of the projection neurons are

GABAergic. In other words, 45% of the incoming connections on a projection neuron

come from an interneuron, because interneurons are inhibitory and GABAergic (there

may be exceptions, but negligible).

Formally, this means that nbI×P (I→P )
nbI×P (I→P )+nbP×P (p)×P (c)×c = 45%

which is equivalent to nbI × P (I → P ) = (45%/55%)× (nbP × P (p)× P (c)× c)
which can be also written P (I → P ) = 4 × (45%/55%) × (P (p) × P (c) × c) (car

nbP = 4× nbI).

Replace it with the values P (c) = 0.25 et c = 55 (average between 35 and 75) :

This therefore gives P (I → P ) = 45× P (p)

Yet P (l) = P (I → I) + P (I → P )

Hence P (l) > 45× P (p)

This result strongly underpins the theory that the mRF has a small-world structure

[Humphries et al., 2006], as shown in Figure 1.6.

After presenting the structure of the mRF, we will now analyze the only two published

models of the mRF.

1.5 Previous models

1.5.1 The Kilmer-McCulloch model - 1969

During the 1960s, W.L. Kilmer, W.S. McCulloch, and J. Blum published several

articles offering the first model of the mRF based on anatomical studies of Scheibel

& Scheibel. In 1969 they synthesized their research in a single article, which became

a reference article on the subject [Kilmer et al., 1969].

The common thread in their model is the concept of mode of behavior: an animal at

a given time follow one and only one mode of behavior, such as eating or sleeping.

The mRF serves to switch from one mode to another. To support this hypothesis,

when the RF is damaged we notice pathological mode switching [Jouvet, 1967]. It

is hypothesized that a cluster is associated with exactly one mode of operation.

Three model variants are available:
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Figure 1.6: This figure shows the degree to which the mRF can be considered
as a small-world network according to the values of P (l), (P (p) and p. On the
Y axis, the value Smax shows the degree of small-worldness: if it is greater than
1, then the network is considered to be small-world. We clearly see that the
proof of P (l) > 45 timesP (p) greatly increases the chances that the mRF has a
small-world structure. Source : [Humphries et al., 2006]

1. S-RETIC (S stands for Simple, Retic for Reticular): As the name suggests, this

first model is simple and directly derived from anatomical data. This model

consists of a dozen modules that receive stimuli and determine what mode to

choose, each module corresponding to a cluster of mRF. These modules are

provided with information to allow them to be both general, in order to remedy

any default modules, and specialized, so as to be able to make a decision. The

modules are more or less linked together according to the distance between

them. Each module makes a decision and gives it a probability, and the final

decision takes into account all the modules. If the consensus for a mode is

large enough, then there is convergence to this mode. This model can easily

be extended to more modes and modules. This model gives correct results,

however it suffers from several shortcomings, the second variant will try to

circumvent them.

2. STC-RETIC (STC stands for Spatio-Temporal Conditioning): This model en-

riches the S-RETIC model by introducing the concepts of development, gen-

eralization, discrimination, habituation and conditioning. To introduce these

properties, additional information must be provided in order to indicate whether

a stimulus or a mode of behavior is good, neutral or bad, like in reinforcement
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learning. This learning occurs individually in each module and cooperatively

between the various modules. The results for this model are not detailed. The

article notes that STC-RETIC have several unattractive features: its connec-

tions do not strictly abyde by the anatomical data of the RF and it can only

change the mode when a new stimulus arrives.

3. H-RETIC (H stands for Hardware): It is a hardware version of the STC-RETIC

model, but being designed at the time of writing the article and then never

finished, as STC-RETIC software implementation had become too complicated

to maintain and develop effectively with the tools of the time.

Nevertheless, the results obtained by the authors with this model are never really ex-

posed, and inaccuracies about its description make it difficult to implement the model

for concrete analysis. In addition, many considerations of the article are interesting

but not explored: thus exposed, the model would not satisfy the requirements of

current scientific literature. As a result, this first model gives a great synopsis of the

mRF data while providing some interesting ideas, although not precisely described

and actually implementable.

For almost 40 years, no new model of the mRF was proposed. In 2005, Mark

Humphries [Humphries et al., 2005] tried to reproduce the Kilmer-McCulloch model

and to evaluate its performance: he implemented the model in a simulated robot and

a real robot. The latter was placed in the survival task inspired by [Girard et al., 2003]

that we will detail later in the chapter 4.1: in this experiment, the robot has access

to four variables (mRF inputs), from which he must choose an action (output of the

MRF) amongst 5 actions it has at its disposal. The goal for the robot is to survive

as long as possible and that the survival time reflects the quality of action selection.

The results were somewhat disappointing: while the model of the mRF often gets

better results than a purely random model (that is to say a model in which deci-

sions are made randomly without considering the input variables), the mRF model is

well below a simple model of type Winner-Takes-All (WTA), whose decisions simply

correspond to the highest of input variables.

1.5.2 Humphries model - 2006

In 2006, Mark Humphries and his colleagues presented their own model of the mRF

in [Humphries and Prescott, 2006], the second model in the literature of the mRF.

They adopted the classical formalism of neural networks and chose to use a population

model, where each neuron model was a set of real neurons of mRF, as shown in the

diagram 1.7. They kept the Kilmer-McCulloch hypothesis which assumes that a

cluster is associated with exactly one action.
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Each cluster consists of two neurons, each modeling the average activity of each two

types of neurons:

� 1 excitatory neuron, projecting on all other neurons except those of its cluster;

� 1 inhibitory neuron, projecting only on himself and on the excitatory neuron of

its cluster.

Figure 1.7: Humphries model. This diagram shows two clusters, the inputs
the right cluster receive and the neural connections with the left cluster. Each
cluster contains one inhibitory neuron i and one excitatory neuron c. Source :
[Humphries and Prescott, 2006]

The weights of the connections on the one hand reflect the probabilities of connections

from anatomical data and on the other hand the weight of actual connections in the

mRF, unknown in the literature.

This model was also evaluated with a survival task inspired by [Girard et al., 2003]

and some parameters have been optimized with evolutionary algorithms, which will

be further discussed in chapter 2.2. The results also proved somewhat disappointing

in terms of survival time, most simulations of this model were only slightly better

compared to the purely random model.
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1.6 Approach and objectives of this report

Although their results did not have very good performance in the survival task com-

pared with a random controller, both models of the mRF had the merit to offer

interesting food for thought as well as in the case of the second one, methods of

evaluation of the model.

Our approach is to build a new model of the mRF, observing strictly the formalism

of neural networks and in accordance with the anatomical data, while reducing the

level of abstraction by increasing the number of neurons per cluster. We decided

to remove the assumption made by the designers of the previous two models that

a cluster corresponds to one and only one action, because no data to support this

hypothesis and given the diversity of actions, it seems reasonable not to keep such a

constraint.

In order to avoid defining all the network settings by hand and find the best network

- best in terms of tasks for action selection and respect of anatomical constraints -

we use evolutionary algorithms like Humphries. Unlike the latter who only defined

a single goal in its evolution, we use a multi-objective evolutionary algorithm, which

will allow us to optimize better our networks and analyze them more accurately.

We will evaluate our model woth two action selection tasks: a disembodied task,

showing a static capacity of a network to pick stocks, and an embodied task that

will put the mRF model in real life conditions, inspired by the survival task which

Humphries also uses for his model evaluation.

The next chapter will detail our approach and the tools we used to carry out this

work.



Chapter 2

Theoretical material

To begin with, we will explain how the mRF will be formalized in our model with

a neural network. Then, as we will evolve it by evolutionary algorithms, we present

how they work and how we can make use of them. The technical aspects of the

implementation of these theoretical tools will be discussed in appendix A.

2.1 Neural networks

A neural network consists of a set of neurons and a set of oriented connections linking

neurons between them. Formally, we can consider it as a weighted directed graph

where each node corresponds to a neuron.

There are different types of neurons: in our model, we use a variant of neurons with

discharge rate of type leaky integrators, called lPDS (locally Projected Dynamical

Systems) as they allow to model a population of neurons. We chose the lPDS

because of their interesting stability properties, having been shown, for example, that

the stability (in the meaning of contraction) of a nonlinear system consisting of lPDS

directly results from the stability of the same lPDS-free system, which has not been

shown with standard leaky integrators [Girard et al., 2008]. As we seek here to build

a system for action selection, stability is preferable to instability.

An lPDS a neuron is characterized by two parameters:

� τ , corresponding to the time constant,

� threshold, corresponding to the activation threshold.

For the sake of simplicity, we fix τ to 5ms and set the threshold to 0 in order not

15
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to increase the number of free parameters. We also fix the iteration step dt, which

by construction must be always less than τ , to 1ms.

The first operation performed by the neuron is a sum of input values, weighted by

the synaptic coefficients, i.e. the sum w1x1 + . . .+ wmxm =
m∑
j=1

wjxj , where xi

are the inputs and wi the synaptic coefficients.

We need to add the threshold threshold to this formula:

threshold+

m∑
j=1

wjxj


We will use the integration of lPDS by the Euler method. The activation function

will therefore be the following, where an is the current internal value of the neuron,

an+1 the next internal value, equal to the output value:

an+1(x) = ±max
(
1,min

(
0,
(
an + (x− an) ∗ dtτ

)))
As x is the weighted sum of the quantities received entries, it eventually gives us:

an+1 = ±max

1,min

0,

an +

threshold+

m∑
j=1

wjxj − an

× dt
τ


The ± presents in the formula reflects the fact that a neuron can be either excitatory

lPDS or inhibitory.

Figure 2.1 shows an example of a neuron, and the graph B.1 illustrates a neural

network derived from our model corresponding to an mRF with four clusters.

Figure 2.1: Example of a neuron with 2 inputs and an activation function with
threshold.

Each cluster in the mRF has the same number of inputs and receives the same values.

Similarly, each cluster of the mRF has the same number of outputs. At the global

level of the mRF, the output values correspond to the average output values of each

cluster. Figure C.1 shows a cluster. A cluster has various numbers of neurons and

connections.
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Figure 2.2: Example of an mRF with 4 clusters. Excitatory neurons are orange
and dark blue neurons are inhibitory. A cluster represented by a blue rectangle.
Neurons located outside the blue rectangles represent inputs received by the mRF
and the neurons to which it projects. This figure can also be found enlarged in
Appendix B.

Figure 2.3: Example of a cluster of the mRF. Excitatory neurons are orange and
dark blue neurons are inhibitory. Each synaptic connection has a weight between
0 and 1. The three neurons in light blue are the inputs (input neurons), the three
neurons in red are the outputs of the mRF (output neurons). This figure can
also be found enlarged in Appendix C.

As these networks contain a large amount of neural connections and parameters, it

would be tedious to optimize them by hand to study how their structure enables

action selection. Therefore, we chose to use evolutionary algorithms to find solutions

since this optimization method has interesting properties for our problem as we shall

see in the next section.

2.2 Evolutionary algorithms

2.2.1 Definitions

Evolutionary algorithms are a family of optimization algorithms based on the principle

of Darwinian natural selection. As part of natural selection, a given environment
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has a population of individuals that compete for survival and reproduction. The ability

of each individual to achieve these goals determines their chance to have children,

in other words to pass on their genes to the next generation of individuals, who for

genetic reasons will have an increased chance of doing well, even better, in realizing

these two objectives.

This principle of continuous improvement over the generations is taken by evolu-

tionary algorithms to optimize solutions to a problem. In the initial generation,

a population composed of different individuals is generated randomly or by other

methods. An individual is a solution to the problem, more or less good: the quality of

the individual in regards to the problem is called fitness, which reflects the adequacy

of the solution to the problem to be solved. The higher the fitness of an individual,

the higher it is likely to pass some or all of its genotype to the individuals of the next

generation.

An individual is coded as a genotype, which can have any shape, such as a string

(genetic algorithms) or a vector of real (evolution strategies). Each genotype is

transformed into a phenotype when assessing the individual, i.e. when its fitness is

calculated. In some cases, the phenotype is identical to the genotype: it is called

direct coding. Otherwise, the coding is called indirect. For example, suppose you

want to optimize the size of a rectangular parallelepiped defined by its length, height

and width. To simplify the example, assume that these three quantities are integers

between 0 and 15. We can then describe each of them using a 4-bit binary number.

An example of a potential solution may be to genotype 0001 0111 01010. The

corresponding phenotype is a parallelepiped of length 1, height 7 and width 10.

Last definition before applying these theories to our model of the mRF, during the

transition from the old to the new generation are called variation operators, whose

purpose is to manipulate individuals. There are two distinct types of variation oper-

ators:

� the mutation operators, which are used to introduce variations within the

same individual, as genetic mutations;

� the crossover operators, which are used to cross at least two different geno-

types, as genetic crosses from breeding.

We chose the evolutionary algorithms because they have proven themselves in various

fields such as operations research, robotics, biology, finance, or cryptography. In

addition, they can optimize multiple objectives simultaneously and can be used as

black boxes because they do not assume any properties in the mathematical model

to optimize, which allows us in our case to optimize a dynamic and nonlinear as a
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Figure 2.4: Functioning of an evolutionary algorithm: from an initial popu-
lation of solutions, they are ranked according to their fitness, the worst ones
are eliminated and the best ones are used to produce new solutions. Source:
[Doncieux et al., 2004]

neural model. Their only real limitation is the computational complexity, hence the

decision to code our program in a fast (C++), multi-threaded language, which we

run on a computer cluster. Appendix A gives details on the technical aspects of the

implementation.

2.2.2 Application

In our model, the mRF is modeled as a neural network. The chosen genotype for the

implementation is a set of neural networks, each corresponding to a cluster of mRF,

and a vector containing all the connections between clusters, which we call intercon-

nections. The phenotype is obtained from the genotype by copying each of these

networks within a large network, the mRF, to which we add the interconnections.

Our mutation operators are:

� Add/delete a neuron ;
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� Add/delete/modify a connection (intra-network) or an interconnection (inter-

network).

We could have over the mutations change other settings, such as certain properties

of neurons (e.g. inhibitory / excitatory), however we preferred to limit the degree

of freedom of the evolution. Also, we haven’t used crossover operators: although

intuitively we might think it would be interesting to cross mRFs so as to allow them

to mix their clusters, such an operation is a very difficult to implement because on

one hand the interconnections are unique to each cluster and to each mRF and on

the other hand such crossings are not really interpretable in terms of evolution as the

role of each cluster is not defined a priori.

One of the hardest part was the implementation of the anatomical constraints of

the mRF, so that evolution produces neural networks consistent with the anatomical

data. We have implemented them in two complementary levels:

� upstream, at the level of mutation operators: at each mutation, we strive to

remain close to anatomical data;

� downstream, during the calculation of fitness: we used a multi-objective evo-

lutionary algorithm, which allows us to define an objective of anatomical plau-

sibility, pushing the networks to meet the anatomic constraints.

The way objectives are defined significantly impacts the results. We have estab-

lished an objective for anatomical plausibility, as well as specific objectives for action

selection tasks that we will detail in the next section.

Lastly, we chose to use the algorithm NSGA-II [Deb, 2001, Deb et al., 2002], which

is to date one of the most efficient multi-objective evolutionary algorithms and by

far the most used. Unlike a single-objective algorithm where there is only one best

individual (possibly with equally placed individuals), the best individuals from a multi-

objective evolution will form a front called the Pareto front, of a size equal to the

number of objectives. Figure 2.5 shows a 2-dimensional Pareto front and Figure

2.6 compares the overall performance of a single-objective algorithm over the entire

results of a multi-objective algorithm.

Now that we have presented one the one hand the mRF and on the other hand the

theoretical tools that we used for the project while explaining their role in modeling

the mRF, we will detail the action selection experiences we carried out and analyze

the results in the next chapter.
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Figure 2.5: Example of a 2-dimensional Pareto front: unless otherwise stated,
evolutionary algorithms maximize objectives unlike most optimization algorithms
whose goal is to minimize them.

Figure 2.6: Single vs multi-objective. A single-objective algorithm will give a
result, while a multi-objective algorithm gives a set of results. On the left figure,
f1 and F2 correspond to scores for objectives 1 and 2. w1 and w2are weights
assigned to the two scores, the linear combination corresponding to a single ob-
jective in order to use a single-objective algorithm. Source : Stéphane Doncieux
et Jean-Baptiste Mouret.



Chapter 3

Disembodied task: the abstract

vector task

In this chapter we will present the first experiment to evaluate our model of the mRF.

First, we will describe the experiment, then we will analyze the results.

3.1 Experiment

The disembodied task is an abstract selection task. The principle is simple: we

provide a vector of dimension 3 as the input to the mRF, with values between 0 and

1. This input vector represents a set of values from various data sources.

The purpose of the mRF is to select one action. We got our inspiration from

[Humphries et al., 2007]: we decided that the mRF will be considered having chosen

the right action if and only if its output vector, also of dimension 3, have its maximum

value in the same dimension as the one containing the maximum value in the input

vector. For example, if the input vector is (0.3, 0.5, 0.1), the MRF will select the

right action if and only if its output vector is of the form (a, b, c), where b > a et

b > c, as illustrated by figure 3.1.

In order that the evolution does not over-learn from a small set of vectors, which

would prevent a good generalization, the mRF will be assessed on its ability to select

an action on the set of 3D vectors where we vary each element from 0 to 1 with a

0.1 step, and removing vectors having a maximum number of components so as to

eliminate ambiguous cases. Here is formally written the set of vectors, which contains

a total of 1155 elements:

22



CHAPTER 3. DISEMBODIED TASK: THE ABSTRACT VECTOR TASK 23

Figure 3.1: This diagram shows the first two goals of the task disembodied: the
network receives as input a 3D vector whose values are between 0 and 1, and it
must make the right decision (in other words select the right dimension) while
maximizing the contrast.

{
X = (x1, x2, x3) | (x1, x2, x3) ∈ S3 ∧ (k = argmax

i
xi,→ ((i 6= k ∧ i ∈ J1, 3K) → xk > xi)

}
où S = {0.1× i | i ∈ J0, 10K}

Nevertheless, this first objective allows uninteresting solutions, such as a neural net-

work that simply copies the input in the output. To make a real action selection,

we defined a second goal forcing the mRF to maximize the contrast between the

maximum value of the output vector and other values. The general formula for cal-

culating the contrast is as follows, where xi is the ith element of vector X and n its

dimension:

contrast(X) =

√√√√√
 n∑
i=1

(xi − xk)2


n−1 où k = arg max
i

xi.

Take for example the vector (0.6, 0.3, 0.5), the contrast is calculated as follows:

contrast =

√
((0.6−0.5)2+(0.6−0.3)2)

2 ≈ 0.22. The higher the contrast, the higher the

action is clearly selected.
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The third and final objective will be to observe the anatomical constraints for the

evolution of networks get as close as possible to a mRF-like network structure. The

score for this objective of anatomical plausibility is a linear combination of scores of

sub-goals, each of them representing one of the following anatomical constraints (we

use the notations of chapter 1.3):

� p must be equal to 80%, the formula for the score is scorep = (−1)×(0.8−p)2,

� P(c) must equal 25%, the formula for the score is scorepc = (−1)×(0.25−pc)2,

� the synapses of projection neurons are 45% GABAergic, the formula for the

score is scoregabaergic = (−1)× (0.45− percentgabaergic)2,

� the interneurons can not project outside their cluster, let

nb interneuron not within chip be the number of interneurons which do

not respect this constraint,

� the projection neurons may not project into their cluster, let

nb projection within chip be the number of projection which do not re-

spect this constraint.

We did not put constraints on P(p) and P(l) as known anatomical data about them

are quite vague. As we remarked in Chapter 2.2, evolutionary algorithms maximize

the objectives, hence the negative scores as approaching the constraints is equivalent

to a score approaching 0.

The formula for calculating the overall score of the third goal is:

scoreanat = 8 × (scorep + scorepc + scoregabaergic) − 1 ×
nb interneuron not within chip− 0.5× nb projection within chip

The weights 8, 1 and 0.5 were arbitrarily chosen, the only criterion being that each

has a value weighted scores very roughly the same order of magnitude, to maximize

the chances that evolution optimizes each of them, not just some potentially at the

expense of others.

In summary, here are the three goals we have identified:

� Objective 1: number of right decisions. Minimum: 0, maximum: number of

vectors tested,

� Objective 2: value of the contrast. Minimum: 0, Maximum: 1 (because all

vector values are between 0 and 1),
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� Objective 3: anatomical plausibility. minimum: −∞, maximum: 0.

In addition to these three goals downstream, we also applied anatomical constraints

upstream, that is to say, within the definition of mutation operators to push the evo-

lution to comply as much as possible with the data anatomy. We already mentioned

in chapter 2.2.2 this double application of constraints. Here are the constraints we

have included within the mutation operators:

� impossibility for a projection neuron to project in their cluster,

� impossibility for an interneuron to project outside their cluster,

� P(c) must be close to 25% ;

� p must be close to 80%.

As we see, these constraints only contain a portion of the known anatomical data:

the interest to add them to the mutation operators is that evolution produces fewer

individuals clearly implausible from an anatomical point of view. However, putting too

much stress in mutation operators would be risky, because besides its computational

cost, restricting the search space excessively can make it more difficult to obtain a

good solution.

Notwithstanding its apparent simplicity, this disembodied task allows us to validate

or invalidate the possibility of an anatomical structure similair to the mRF to make

selections. We will analyze the results in the next section.

3.2 Results

First, here are the parameters that we use throughout the experiments, unless oth-

erwise indicated:

� population size: 500 individuals,

� number of generations: 500,

� number of clusters: 4,

� initial number of neurons per cluster (in addition to the input and output

neurons ): uniform random between 3 and 10, the clusters may have a different

number of neurons in the same mRF,

� probiblity of adding/deleting a neuron/connection (inter- or intra-cluster): 0.05

,
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� probability of modifying the weight of a connection (inter- or intra-cluster):

0.1,

� number of iterations to propagate an input in the network: 100.

After 300 generations, the computed evolutions generate individuals that make more

than 95 % of correct decisions, in some cases 100 %, almost perfectly respecting

anatomical constraints and whose output vectors have a contrast greater than 0.6.

Chart 3.2 shows a 2D Pareto front typically obtained when the scores represents the

objectives of good decisions and contast obtained by each individual. Chart 3.3 shows

a 3D Pareto with the scores of the 3 objectives.
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Figure 3.2: 2D Pareto front showing the scores for the contast objective on the x-
axis and of the good decision objective on the y-axis obtained by each individual
of each generation during the evolution.

Let’s take the 5 best individuals having the maximum number of good decisions

(1155) and look at the average results:

� number of good decisions score: 1155 (which corresponds to the theoretical

maximum);

� contrast score: 0.68761 (the theoretical maximum is 1) ;

� anatomical plausibility score: -1.20792e-15 (the theoretical maximum is 0).
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Figure 3.3: 3D Pareto front showing the scores for the contast, good decision and
anatomical plausibility objectives obtained by each individual of each generation
during the evolution.

The following table summarizes the average anatomical statistics of these five indi-

viduals.
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Statistics of the

top 5

individuals

Constraint on

mutation

operators

Constraint in

objectives

Known

anatomical

data

total number of

neurons
57 None None NA

total number of

connections
117 None None NA

p 80% 80% 80% 80%

percentgabaergic 45% None 45% 45%

P (c) 25% 25% 25% 25%

P (p) 8.73626% None None < 10%

P (l) 8.61552% None None < 10%

Number of

interneurons

projecting

outside their

cluster

0 0 0 0

Number of

projection

neurons

projecting in

their cluster

0 0 0 0

This result shows that the mRF can perform a task of action selection while respecting

the known anatomical data. For comparison, [Humphries et al., 2007] from which

this task was inspired gets about 75% of good decisions, without taking into account

the contrast, and considers that this is sufficient to show the possibility of an action

selection.

We have also run the program by removing the constraints located in the mutation

operators. As shown in figure3.4, this has the effect of increasing the number of in-

dividuals with low anatomical plausibility, since we see that the 2D front representing

the scores of the objectives of good decisions and contrast obtained by each individual

is much less clear than the one obtained in the initial experience. This observation

corresponds to the intuition that we had. Still, the evolution always generates indi-

viduals - certainly rarer than in the initial experiment - almost perfectly anatomically

plausible, with a contrast greater than 0.5 and whose rate of good decisions is greater

than 95%.

Another variant we tried was to remove the constraints of the mutation operators
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Figure 3.4: 2D Pareto front without any constraints in the mutations. The front
shows the scores of the objectives of good decisions and contrast obtained by each
individual.

and eliminate the objective of anatomical plausibility. In other words, we wanted to

see how a system would evolve without anatomical constraint on the selection task.

The results show that on the one hand the networks achieved performance similar to

those obtained with the constrained networks or even slightly better (see chart 3.5)

if we consider the contrast, and on the other hand through statistical analysis on the

structure of these networks we see they do not tend to mRF-like structures. This

means that the known anatomical data on the mRF represent neither an advantage

(because there are other network structures just as effective) nor a disadvantage for

selection.

This first series of experiments based on a disembodied task showed the computa-

tional capacity of the mRF to perform a selection task. Our model is more efficient

than that Humphries’ in this task and we have added an additional constraint, namely

the contrast. We will now make a second series of experiments to analyze the per-

formance of the mRF in an embodied task of robotic simulation.
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Figure 3.5: 2D Pareto of the evolution without any anatomical constraint (neither
in mutation operators, nor in objectives). The front shows the scores objectives
contrast on the abscissa and on the ordinate good decisions made by each indi-
vidual in each generation during evolution.



Chapter 4

Embodied task: the survival task

Like the previous chapter, we will in this chapter first present the experience at first,

and secondly we will analyze the results.

4.1 Experiment

The survival task that we use here is strongly inspired by [Girard et al., 2003]. In this

task, a robot has to select effective behaviors in order to ensure its survival, maintain-

ing its internal state variables in tolerable ranges, the area of viability [Ashby, 1952].

This survival depends directly on the robot’s ability to refuel with two different types

of resources in a limited time by its level of recharge. The use of two different re-

sources forces the robot to move in the environment to access them and then puts it

in conflict to determine which resource is a priority at any given time, which is likely

to generate behavioral oscillations. This task will be simulated on a computer.

The robot will be placed in an environment where it can find two types of resources:

ingestion areas where it can stock up and digestion areas where it can assimilate

these stocks and turn them into usable energy. Since all the behaviors of the robot

consumes energy, it will therefore have to alternate ingestion phases with digestion

phases in order to survive.

The experimental environment is a 2D surface of 400x400 units surrounded by walls.

It is covered with 25 tiles of 80x80 units, with three different tile types: 21 gray tiles

(neutral zones), two black tiles (ingestion areas), whose resources are inexhaustible,

and 2 white tiles (digestion areas). Figure 4.1 shows the setting.

The robot is a disc of radius 20 units and has two internal variables:

31
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Figure 4.1: Setting of the survival task. We see 21 gray tiles, two black tiles and
2 white tiles. All tiles have the same size. The yellow circle represents the robot.

� the Potential Energy (PE) corresponds to the reserves drawn from the in-

gestion areas of intake, between 0 and 1,

� the Energy (E) is the energy actually used to survive in the environment; it

is obtained by digestion of the PE on light areas. To survive, the robot must

maintain E above 0 and the maximum of E is 1.

The robot has access to 4 external sensors:

� a left bumper (BL), binary value, 1 if contact with the wall, 0 otherwise,

� a right bumper (BR), binary value, 1 if contact with the wall, 0 otherwise,

� a floor sensor for black tiles (LD pour light darkness), binary valuee, 1 if

above a black square, 0 otherwise;

� a floor sensor for white tiles (LB pour light brightness), binary value, 1 if

above a white square, 0 otherwise;

The robot has five actions available to it:

� Wander: the robot moves randomly (random rotation between 0 and 9 fol-

lowed by a forward move of 5 units). Note that in the absence of navigation
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capabilities and memory on the environment, this behavior is the only way for

the robot to find areas of refills (black or white tiles). This action takes 2 time

units.

� Avoid an obstacle: the robot performs a backward move of 60 units followed

by a rotation of 180 °. This action takes 2 time units.

� Reload on black tile: the robot stops and reloads its PE: δPE = 0.027×LD.

The robot can only recharge its PE if it is on a black tile. This action takes

one time unit.

� Reload on white tile: the robot stops and reloads its E: δE = 0.027 × LB
and δPE = −0.027×LB. The robot can only recharge its E if it is on a white

area. This action takes one time unit.

� Rest: the robot does nothing. This action takes one time unit.

At each unit of time, the robot consumes 0,002 of its energy, even when he chooses

to rest. If the energy becomes negative or zero, then the robot dies.

To choose an action, the mRF receives as input the salience of each action calculated

from the internal and external variables. The salience is the degree of urgency or

motivation to perform an action. The formulas used here to calculate the salience

are the same as in the evaluation of the mRF model with [Humphries et al., 2005]

and in the evaluation of a model of the basal ganglia by [Girard et al., 2003].

� Swander = −BL −BR + 0.8(1− PE) + 0.9(1− E)

� Savoid = 3BL + 3BR

� Sreload on dark = −2LB −BL −BR + 3LD(1− PE)

� Sreload on light = −2LD −BL −BR + 3LB(1− E)
√

1− (1− PE)2

If the mRF fails to converge with the salience input data, then the action off is

selected. In our experiment, a new vector of saliences is propagated during 100 itera-

tions (one iteration lasts 1 ms) in the mRF and we consider that there is convergence

when over the last 50 iterations the variation of each value of the output vector of

the mRF is less than 0.001. When the mRF converges, then we consider the action

selected is the highest output of the mRF. We will also test a variant in which the

selected action is modulated by the contrast of the output vector of the mRF.
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4.2 Results

To evaluate each robot controller, we simulated five survival tasks in the fitness

computation, each time by placing the robot at a random location on the map and

initialized with 0.5 of energy and 1 of potential energy. As each unit of time the

robot uses 0,002 of its energy, its minimum life time is subsequently 500 units of

time. So that the assessment takes a reasonable time of computation, we limited the

simulations to 3000 time units each.

First, to ensure a sufficient complexity of the task, we assessed a random controller,

which randomly chose one of the five possible actions. The results of this controller

shows a median survival between 500 and 600 units of time, confirming that the task

can not be resolved by a random controller and provides a basis for comparison.

A second prior verification we conducted was to test a Winner-Takes-All (WTA) type

controller, the latter choosing the action based on the highest salience. Our first

results have shown that these controllers had a life often approaching 3000 units

of time, which meant that the task was too simple to evaluate our model of the

mRF correctly. We subsequently tried to find a factor complicating the task and we

found that the speed of the robot, not specified in [Humphries et al., 2005], greatly

influences the results. Initially, in our experiment, when the robot controller chooses

the action to explore randomly, it moves forward 10 units after performing a random

rotation. When we reduce the displacement to 5 good speed units, the task becomes

more difficult and a controller WTA has only average life of about 1250 units of time,

which is near the maximum life span (3000 time units). Therefore, the task seems

nontrivial to achieve. Figure 4.2 compares the survival time for random controller

and WTA in 1000 survival tasks .

The results of the mRF controller show that within a few generations the robot is able

to live more than 2500 units of time or even the maximum 3000. However, it takes

several hundreds of generations for the contrast to become important. Figure 4.3

shows the evolution of the 2D Pareto front of a mRF controller after 500 generations,

the survival time is near or equal to the maximum, the contrast is about half the

theoretical maximum for the best individuals. Scores for the anatomical plausibility

objective show that the mRF meets almost exactly the known data on the mRF.

Regarding the time spent on average on each activity, the figure 4.5 shows that there

is no significant difference between the different controllers, with the exception of the

trivial random controller.

We tried to force the mRF to have a higher contrast by modulating the actions based

on the contrast value. To this end, we have redefined every five actions to include

the value of the contrast, f is the modulation function of the contrast:
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Figure 4.2: Comparison of survival time for random controllers and WTA over
1000 survival tasks.

� Wander: the robot moves randomly (random rotation between 0 and

f(contrast)× 9° followed by a forward move of f(contrast)× 5 units).

� Avoid an obstacle: the robot performs a backward move of f(contrast)×60

units followed by a rotation of f(contrast)× 180°.

� Reload on black tile: δPE = f(contrast)× 0.027× LD.

� Reload on white tile: δE = f(contrast) × 0.027 × LB et δPE =

−f(contrast)× 0.027× LB.

� Rest: the robot does nothing.

Taking as a modulation function f(x) =
√
x and evaluating each network over 5

survival tasks, mRF networks we obtained have survival times which are similar or

slightly lower than those WTA controllers. However, the contrast is a little better

than when we introduce a modulation function, as shown in figure 4.6. Therefore,

the modulation function introduced a selection pressure favoring the contrast at the

expense of the survival time. The anatomical plausibility objective always has a score

between -1 and 0, which means that networks have an mRF-like structure.
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Figure 4.3: 2D Pareto front for the evolution of the mRF controller represent-
ing the scores of the objectives survival time (abscissa) and contrast (ordinate)
obtained by each individual in each generation during the evolution. The mRF
controller was evaluated on five survival tasks.

As another variant of the initial experiment, we tried to make the task more realistic

by removing the computation of saliences and giving directly as the network’s inputs

the 4 external variables (BL, BR, LD et LB) as well as the 2 internal variables (E

et EP ), which has the effect of complicating the task. We have also given as inputs

1 − E and 1 − EP so as to lower the task’s complexity, following the experiment’s

settings of [Humphries and Prescott, 2006]. The networks have therefore in this

variant 8 inputs and 4 outputs.

The chart 4.7 shows the Pareto fronts obtained after 1000 generations. We see that

some networks have a lifetime exceeding 2000 units of time, however the contrast

is very low (below 0.1). Compared with the results obtained with the model of

Humphries [Humphries and Prescott, 2006], the latter indicates that most of the

networks obtained only manage to do slightly better than a random controller, but

the actions are modulated according to contrast like what we did in the previous

experiment. Here, our networks clearly succeed better than a random controller,

however the actions are not modulated.

These results show that the mRF is generally more effective than a WTA network and

a controller even more random, as summarized in Figure 4.4, unlike the experiments
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Figure 4.4: Comparison of the best average survival time on 5 survival tasks of the
random, WTA and mRF controllers. For each type of controller, we performed
20,000 evaluations, each consisting in 5 survival tasks and average duration of
survival. We have kept here that the highest found average for each type of
controller.

of [Humphries et al., 2005] who failed to evolve the mRF optimally enough to exceed

the WTA. This means that the mRF is not only able to perform action selection, but

that it can also cope with complex situations where a WTA network is not efficient

enough. However, in the variants in which we tried to make the task more realistic

survival by modulating the actions based on the contrast of the mRF output vectors

or giving it directly the internal and external variables without prior calculation of

salience, the results we have obtained are less convincing: it would be interesting to

further study these variants. It would also be interesting to quantify the propensity of

our mRF networks to generalize their performance by evaluating them over a bigger

number of survival tasks.
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Figure 4.5: Comparison of time spent on each activity by the random, WTA
and mRF controllers. These statistics aggregate the data of 500 survival tasks
for each of the controllers with the highest survival times among the 50,000
simulated survival tasks.
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Figure 4.6: 2D Pareto front of the evolution of a mRF controller representing
the scores of the objectives of survival time (abscissa) and contrast (ordinate)
obtained by each individual in each generation during evolution, with modulation
of action based on the contrast value. The modulation function is f(x) =

√
x

and the mRF controller was evaluated on five survival tasks.
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Figure 4.7: 2D Pareto front of the evolution of a mRF controller without salience
representing the scores of the objectives of survival time (abscissa) and contraste
(ordinate) obtained by each individual in each generation during the evolution.
The network receives direct input from all external and internal variables, and
the mRF controller was evaluated over five survival tasks.



Chapter 5

Discussions and perspectives

The nature of this modeling work of the mRF was primarily exploratory. Only two

models existed and the number of articles on this area of the brain is quite low. As a

result, we had to make a number of choices and focus our research on some points

that seemed the most important to initiate such a modeling work. However, many

areas of study remain to be explored, we will briefly mention them in this chapter.

To begin with, we have not detailed the parameters P (p) and P (l) of the network:

we have seen in the first part of this report that literature suggests that these values

are below 0.1. In our experiments, we put neither P (p) nor P (l) the anatomical

constraints, however the structures of the best individuals we have obtained show

that the average values of P (p) and P (l) both rotate around 0.09. This is consistent

with the known anatomical data of the mRF, yet we have shown from the known

anatomical data that P (l) > 45× P (p), which is a relationship that we do not find

in our results. Therefore, it would be interesting to add this constraint to see the

performance of the evolved mRF.

We also left out the analysis and the impact of the neural population model chosen,

i.e. the lPDS, which we described in chapter 2.1: first, we could let free the parame-

ters we have fixed (τ to 5ms and threshold to 0). Second, there are other models of

neural population that we could compare the efficiency with our model of the mRF

with respect to the lPDS. Lastly, the networks that we developed are of sufficient

size for modeling, especially as we have them evolve through evolutionary algorithms,

with which it is best to handle networks of small size for reasons of computational

speed and ease of interpretation: therefore, it would be interesting to quantify the

impact of the maximum number of neurons that may contain a cluster.

40
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About the embodied task, we compared our results indirectly with those of Humphries

via comparison with the performance of random and WTA controllers. It would be

interesting to directly compare our results with those of Humphries by implementing

its model in our program.

In addition, the embodied task has a certain level of abstraction. A further assessment

of the mRF would be to incorporate it as a controller of a known metabolic activity of

an animal, such as eating behaviors and dipsiques mouse [Guillot, 1988], and compare

the selections made by the mRF with the actual behavior of the animal.

It would also be interesting to analyze the neural networks obtained from the changes

on one hand to better understand how they manage to solve a selection task, and on

the other hand to try to extract the similarities between obtained networks. By the

same token, we could study the properties of these networks, such as the presence of

structures like small-world, scale-free or others.

On the neuro-evolution side, we made an extensive use of evolutionary algorithms

without assessing their usefulness and their impact on the networks obtained after

evolution. Among the various aspects that would be useful to further study, intro-

ducing new targets could yield interesting results, including:

1. a generalization objective, to ensure that decisions made by the mRF in

the original task can be generalized to other similar tasks. Specifically, in the

disembodied task it would mean ensuring that if we input a vector of the mRF

not found in all input vector set that we used, for example (0.3, 0.5, 0.68)

the mRF also gives the right output (0, 0, 1). In the disembodied task, the

generalization may lead to assess the mRF in different maps than the one we

used [Pinville et al., 2011].

2. a diversity objective, with which the evolution would check whether

within each population individuals (i.e. mRFs) are not all alike. This

objective would address the genetic drift (convergence to a local opti-

mum), which is often found, like natural selection has formed sub-groups

due to geographical constraints. We can find as many local optima

as sub-groups, thereby achieving better results by getting closer to the

global optimum [Mouret and Doncieux, 2009a, Mouret and Doncieux, 2009b,

Doncieux and Mouret, 2009].

Another technique that we could use to try to improve the performance of evolutionary

algorithms would be to perform evolutions in stages. Indeed, when we try to have the

networks perform a difficult task, the search space is very important and evolution

may experience difficulties to cross certain thresholds. For example, we have seen

that the variant of the embodied task in which we gave to the mRF directly to internal
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and external variables without calculating salience generated networks whose output

vector contrast was very low, even after more than 1,000 generations. One possibility

to help the evolution to further optimize the contrast could have been a first step

to have the network learn the calculation of salience, and then to solve the survival

task. As we showed in the disembodied task, mRF-type networks can act as a WTA,

and a WTA controller can perform the survival task from the calculation of salience

in a moderately effective (about 1,500 units of survival time, up to 3,000) but with a

maximum contrast: it is possible that such an introduction of a temporary objective

(learning calculation of salience) in the development allows to cross the thresholds

more easily in the optimization goals life and contrast.

On the neurophysiological side, the literature gives a number of ideas to develop

models for the mRF, in particular to better take into account the diversity of neu-

ronal nuclei and divide the mRF on its three regions (midbrain, pontine, bulbar) and

consider further the functions of the mRF. Various studies of the neurophysiological

activity of the reticular formation (RF) represent a useful source of inspiration, es-

pecially the series of physiological studies on the RF produced by JM. Siegel in the

1970 and 1980. Thus,

� [Siegel and McGinty, 1977] found that neurons in the pontine reticular forma-

tion (PRF) had a high activity rate when high occular activity was observed by

electrooculography, which is consistent with previous studies. The authors also

show the existence of a link between the discharges of neurons in the PRF and

motor activity. The data found suggest a major role for PRF neurons in the

regulation of motor activities. The study also gives an interesting indication on

projections from the PRF: “The PRF’s medial zone [...] is the principal source

of pontine reticular projections to the spinal cord; more than half of its neurons

send their axons directly into the ventral, motor areas of the cord.”.

� [Siegel, 1979] shows the existence in cats of three classes of cells in the bulbar

RF (medullary reticular formation cells), classification based on the correla-

tion between their discharge and type of movements: a class discharges when

the movement is laterally asymmetric (54% of the cells), the other class dis-

charges when the movement is laterally symmetrical (38% of cells). The 8%

of remaining cells correspond to the third class and are not related to motor

behavior. There is no correlation between RF and bulbar eye movement, unlike

the pontine RF.

� [Siegel et al., 1979] indicates the presence in cats of a correlation between the

discharges of neurons in the medulla oblongata of the mRF (aka. medial

medullary reticular formation and certain motor activities during the phases

of activity and during REM sleep. The study notes that the three cell types
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mentioned above can also be found in the pons. It also gives an estimate of

their proportions and their location.

In the long term, one of our goals is to connect our mRF model with existing models

for the basal ganglia , which in turn will raise a number of important issues: how

the networks interact, what is the precise role of each, and so on. As a historical

sidenote, the original article introducing the first model of the mRF ended with

a final chapter of cybernetic considerations which specifically refered to this kind of

connections between brain areas and imagining their equivalents in a robotic controller

[Kilmer et al., 1969].



Chapter 6

Conclusion

The objective of this study was to propose a new model of the mRF closer to the

known anatomical data than the two previous existing models in the literature, and

evaluate its ability to make the action selection. Our approach based on evolutionary

algorithms has allowed us to show that a mRF-like network has the capacity to make

decisions and strongly select them:

� the first series of experiments based on a disembodied task showed the com-

putational capacity of the mRF to perform a selection task (chapitre 3);

� the second series of experiments based on an embodied task shows that the

mRF is able to perform a task of action selection in simulated condition

(chapitre 4).

The results we obtained are better than those achieved by Humphries’ model in

the two tasks we have discussed: refining our model by adding more neurons and

removing the hypothesis of the Kilmer-McCulloch model taken up by Humphries that

each cluster represents one action enabled us to improve the performance in terms

of selection while better respecting known anatomical on the mRF.

However, the mRF-like structure does not appear to represent a particular advantage

over a neural network without constraint. Therefore, to answer the original question,

the mRF can be a substrate for action selection, but it does not appear that its

structure represents an asset in particular.

In addition, the proof of P (l) > 45× P (p) in chapter 1.4 virtually proves that mRF

has a network structure of small-world type. This result can turn out to be very

useful in future analysis.
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Given the exploratory nature of this work to model the mRF, many areas of research

that we have mentioned in the discussion remain to be further explored so as to refine

the model and deepen the results. However, the results of this study are encouraging

and besides their implications on the computational capabilities of the MRF, they

show the potential contribution of evolutionary algorithms in computational neuro-

science.
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Appendix A

Technical notes on the

implementation

We would like to discuss the technical tools we used to carry out this project, because

they represented one the one hand a very important work during the internship, and

on the other hand it is always useful to have a concrete vision of technical tools

used to find the results of the report, whether out of curiosity, to reproduce the

experiments or even to find possible solutions to implement one’s own models.

We also want to emphasize that the work carried out during the internship by no

means has for sole purpose to produce this report but also to provide an oppor-

tunity for potential future successors to be quickly operational without needing to

build their own tools from scratch. We thus join the initiative Plume from CNRS

(http://www.projet-plume.org), whose purpose is to promote the open-source soft-

ware (in French, the acronym PLUME stands for Promouvoir les Logiciels Utiles,

Mâıtrisés et Économiques) destined for the community of higher education and re-

search.

To this end, particular attention was paid to the quality of development and all the

code is available under the CeCILL license (http://www.cecill.info/) at the address

http://franck-dernoncourt.com/publications.php. The table A.1 shows some statis-

tics on the source code as well as scripts written to automate certain processes and

analyze the results (contained in log files of the main program).

Neural networks and evolutionary algorithms have been developed in

C++ for computational reasons, the evolutionary algorithms demand-

ing very important computational resources, based on the framework
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Figure A.1: Statistics on the source code of the program and of the analysis
scripts written in addition to the Sferes2 framework and existing libraries. The
large size of C/C++ headers can be explained by the intensive use of templates.

Sferes2 (http://pages.isir.upmc.fr/ mouret/sferes2/) developed by ISIR

[Mouret and Doncieux, 2010]. For the purposes of development, we ported

Sferes2 to Windows. The program is multithreaded and is based on Boost libraries,

including the Boost Graph Library for managing the graphs easily, TBB (Threading

Building Blocks Intel) for multi-threading, Eigen2 for matrix calculations and SDL

for graphics rendering the survival task.

Graphviz was used to generate graphical neural networks representing the mRF and

the program ffpmeg was used to generate videos from these graphs. MATLAB was

chosen to analyze the results.

Lastly, we made an intensive use of the computer cluster of ISIR to run our program,

the latter requiring high computing power. All programs used in this project run as

well on Windows as on Linux.

The entire source code and scripts of analysis is available at http://franck-

dernoncourt.com/publications.php

Mirror 1: http://pages.isir.upmc.fr/evorob db/moin.wsgi/mRF2011.

Mirror 2: http://bit.ly/mRF-xp

http://pages.isir.upmc.fr/~mouret/sferes2/
http://franck-dernoncourt.com/publications.php
http://franck-dernoncourt.com/publications.php
http://pages.isir.upmc.fr/evorob_db/moin.wsgi/mRF2011
http://bit.ly/mRF-xp
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Figure B.1: Example of an mRF with 4 clusters. Excitatory neurons are orange,
dark blue neurons are inhibitory. A cluster is a blue rectangle. Neurons located
outside the blue rectangles represent inputs received by the mRF and the neurons
to which it projects.
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Figure C.1: Example of a mRF cluster. Excitatory neurons are orange, dark blue
neurons are inhibitory. Each synaptic connection has a weight between 0 and 1.
The three neurons in light blue are the inputs (input neurons), the three neurons
in red are the outputs of the mRF (output neurons).
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